cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A086620 Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^2.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 14, 7, 1, 1, 9, 28, 28, 9, 1, 1, 11, 47, 79, 47, 11, 1, 1, 13, 71, 175, 175, 71, 13, 1, 1, 15, 100, 331, 504, 331, 100, 15, 1, 1, 17, 134, 562, 1196, 1196, 562, 134, 17, 1, 1, 19, 173, 883, 2464, 3514, 2464, 883, 173, 19, 1, 1, 21, 217
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2003

Keywords

Comments

Determinants of upper left n X n matrices results in A086619: {1,2,10,150,7650,1438200,1051324200,...}, which is the products of the first n terms of the binomial transform of Catalan numbers (A007317): {1,2,5,15,51,188,731,2950,...}.

Examples

			Rows begin:
1,_1,__1,__1,___1,____1,____1,_____1, ...
1,_3,__5,__7,___9,___11,___13,____15, ...
1,_5,_14,_28,__47,___71,__100,___134, ...
1,_7,_28,_79,_175,__331,__562,___883, ...
1,_9,_47,175,_504,_1196,_2464,__4572, ...
1,11,_71,331,1196,_3514,_8764,_19244, ...
1,13,100,562,2464,_8764,26172,_67740, ...
1,15,134,883,4572,19244,67740,204831, ...
		

Crossrefs

Cf. A086621 (diagonal), A086622 (antidiagonal sums), A086619 (determinants).

Formula

Contribution from Paul Barry, Feb 04 2009: (Start)
T(n,k)=sum{j=0..n+k, C(k,j-k)*C(n+2k-j,k)*if(k<=j,A000108(n-k),0)};
Regarded as a number triangle read by row, columns are generated by sum{j=0..k, C(k,j)*A000108(j)*x^j}*x^k/(1-x)^(k+1). (End)

A294352 Product of first n terms of the binomial transform of the factorial.

Original entry on oeis.org

1, 2, 10, 160, 10400, 3390400, 6635012800, 90899675360000, 9962695319131360000, 9827302289744364817600000, 96937502343569678741652977600000, 10518214548789290471667075399621491200000, 13695360582395151673134516587047571322777664000000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Sum[Binomial[m, k]*k!, {k, 0, m}], {m, 0, n}], {n, 0, 12}]

Formula

a(n) ~ c * exp(n+1) * BarnesG(n+2).
a(n) ~ c * n^(n^2/2 + n + 5/12) * (2*Pi)^(n/2 + 1/2) / (A * exp(3*n^2/4 - 13/12))
where c = 0.24314714161123874545254157058990661627416712475691705561000082745...
and A is the Glaisher-Kinkelin constant A074962.

A294353 Product of first n terms of the binomial transform of n^n (A086331).

Original entry on oeis.org

1, 2, 14, 602, 236586, 1116922506, 78020387811618, 95634036502805444826, 2378081951650318040462277306, 1361239109900199746154166909875717978, 20062823024247092576000017563809908231829439138, 8420023655209092490508999978430595224656730339006712229850
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[1 + Sum[Binomial[m, k]*k^k, {k, 1, m}], {m, 0, n}], {n, 0, 12}]

Formula

a(n) ~ c * n^(n*(n+1)/2 + 1/12 + exp(-1)/2) / exp(n^2/4 - n*exp(-1)), where c = 1.981849007720509372587479129359338230641860983165241915197508762536...

A294350 Product of first n terms of the binomial transform of the partition function (A000041).

Original entry on oeis.org

1, 2, 10, 130, 4420, 388960, 87516000, 49796604000, 70960160700000, 251057048556600000, 2188464292267882200000, 46682131818366195208200000, 2421822316605019841206207800000, 303875733353698259555507717497200000, 91748896295748761809334889636212098800000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Sum[Binomial[m, k]*PartitionsP[k], {k, 0, m}], {m, 0, n}], {n, 0, 15}]
  • PARI
    a(n) = prod(m=0, n, sum(k=0, m, binomial(m,k)*numbpart(k))); \\ Michel Marcus, Oct 29 2017

A294351 Product of first n terms of the binomial transform of the number of partitions into distinct parts (A000009).

Original entry on oeis.org

1, 2, 8, 72, 1512, 74088, 8446032, 2238198480, 1376492065200, 1957371716714400, 6404520257089516800, 47989070286371749382400, 820133211194093196945216000, 31862175254890520701321641600000, 2805942463821933705561890367504000000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Sum[Binomial[m, k]*PartitionsQ[k], {k, 0, m}], {m, 0, n}], {n, 0, 15}]

A102318 A mean binomial transform of the Catalan numbers.

Original entry on oeis.org

1, 1, 3, 8, 27, 97, 373, 1493, 6163, 26027, 111897, 488006, 2153429, 9596199, 43121211, 195165576, 888861555, 4070582971, 18732710281, 86584519280, 401776434017, 1870983991035, 8740907398527, 40956401225597
Offset: 0

Views

Author

Paul Barry, Jan 04 2005

Keywords

Comments

Average of binomial and inverse binomial transforms of the Catalan numbers A000108.

Crossrefs

Formula

G.f.: (2-sqrt((1-3x)/(1+x))-sqrt((1-5x)/(1-x)))/(4x);
a(n)=sum{k=0..floor(n/2), binomial(n, 2k)C(n-2k)};
a(n)=sum{k=0..n, binomial(n, k)C(k)(1+(-1)^(n-k))/2}.
Conjecture: -(n-1)*(n+1)*a(n) +2*(5*n^2-9*n+1)*a(n-1) +2*(-15*n^2+58*n-49)*a(n-2) +2*(10*n^2-76*n+123)*a(n-3) +(31*n-55)*(n-3)*a(n-4) -30*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jun 08 2016
Conjecture: +(3*n-10)*(n-1)*(n+1)*a(n) +2*(-12*n^3+58*n^2-67*n+10)*a(n-1) +2*(21*n^3-136*n^2+289*n-196)*a(n-2) +2*(n-2)*(12*n^2-46*n+27)*a(n-3) -15*(n-2)*(n-3)*(3*n-7)*a(n-4)=0. - R. J. Mathar, Jun 08 2016
a(n) ~ 5^(n + 3/2) / (16 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 30 2017

A294349 Product of first n terms of the binomial transform of the Lucas numbers (A000032).

Original entry on oeis.org

2, 6, 42, 756, 35532, 4370436, 1407280392, 1186337370456, 2618246576596392, 15128228719573952976, 228844715840995186667952, 9062937281450932377610903056, 939663463215395570775453650652192, 255065069445576619918001465293982953056
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Sum[Binomial[m, k]*LucasL[k], {k, 0, m}], {m, 0, n}], {n, 0, 15}]
    Table[Product[LucasL[2*k], {k, 0, n}], {n, 0, 15}]

Formula

a(n) ~ c * phi^(n*(n+1)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and c = 2.349094356918735309421297337651771419003525539652230102934874983942...
Showing 1-7 of 7 results.