A086620
Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^2.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 14, 7, 1, 1, 9, 28, 28, 9, 1, 1, 11, 47, 79, 47, 11, 1, 1, 13, 71, 175, 175, 71, 13, 1, 1, 15, 100, 331, 504, 331, 100, 15, 1, 1, 17, 134, 562, 1196, 1196, 562, 134, 17, 1, 1, 19, 173, 883, 2464, 3514, 2464, 883, 173, 19, 1, 1, 21, 217
Offset: 0
Rows begin:
1,_1,__1,__1,___1,____1,____1,_____1, ...
1,_3,__5,__7,___9,___11,___13,____15, ...
1,_5,_14,_28,__47,___71,__100,___134, ...
1,_7,_28,_79,_175,__331,__562,___883, ...
1,_9,_47,175,_504,_1196,_2464,__4572, ...
1,11,_71,331,1196,_3514,_8764,_19244, ...
1,13,100,562,2464,_8764,26172,_67740, ...
1,15,134,883,4572,19244,67740,204831, ...
A294352
Product of first n terms of the binomial transform of the factorial.
Original entry on oeis.org
1, 2, 10, 160, 10400, 3390400, 6635012800, 90899675360000, 9962695319131360000, 9827302289744364817600000, 96937502343569678741652977600000, 10518214548789290471667075399621491200000, 13695360582395151673134516587047571322777664000000
Offset: 0
-
Table[Product[Sum[Binomial[m, k]*k!, {k, 0, m}], {m, 0, n}], {n, 0, 12}]
A294353
Product of first n terms of the binomial transform of n^n (A086331).
Original entry on oeis.org
1, 2, 14, 602, 236586, 1116922506, 78020387811618, 95634036502805444826, 2378081951650318040462277306, 1361239109900199746154166909875717978, 20062823024247092576000017563809908231829439138, 8420023655209092490508999978430595224656730339006712229850
Offset: 0
-
Table[Product[1 + Sum[Binomial[m, k]*k^k, {k, 1, m}], {m, 0, n}], {n, 0, 12}]
A294350
Product of first n terms of the binomial transform of the partition function (A000041).
Original entry on oeis.org
1, 2, 10, 130, 4420, 388960, 87516000, 49796604000, 70960160700000, 251057048556600000, 2188464292267882200000, 46682131818366195208200000, 2421822316605019841206207800000, 303875733353698259555507717497200000, 91748896295748761809334889636212098800000
Offset: 0
-
Table[Product[Sum[Binomial[m, k]*PartitionsP[k], {k, 0, m}], {m, 0, n}], {n, 0, 15}]
-
a(n) = prod(m=0, n, sum(k=0, m, binomial(m,k)*numbpart(k))); \\ Michel Marcus, Oct 29 2017
A294351
Product of first n terms of the binomial transform of the number of partitions into distinct parts (A000009).
Original entry on oeis.org
1, 2, 8, 72, 1512, 74088, 8446032, 2238198480, 1376492065200, 1957371716714400, 6404520257089516800, 47989070286371749382400, 820133211194093196945216000, 31862175254890520701321641600000, 2805942463821933705561890367504000000
Offset: 0
-
Table[Product[Sum[Binomial[m, k]*PartitionsQ[k], {k, 0, m}], {m, 0, n}], {n, 0, 15}]
A102318
A mean binomial transform of the Catalan numbers.
Original entry on oeis.org
1, 1, 3, 8, 27, 97, 373, 1493, 6163, 26027, 111897, 488006, 2153429, 9596199, 43121211, 195165576, 888861555, 4070582971, 18732710281, 86584519280, 401776434017, 1870983991035, 8740907398527, 40956401225597
Offset: 0
A294349
Product of first n terms of the binomial transform of the Lucas numbers (A000032).
Original entry on oeis.org
2, 6, 42, 756, 35532, 4370436, 1407280392, 1186337370456, 2618246576596392, 15128228719573952976, 228844715840995186667952, 9062937281450932377610903056, 939663463215395570775453650652192, 255065069445576619918001465293982953056
Offset: 0
-
Table[Product[Sum[Binomial[m, k]*LucasL[k], {k, 0, m}], {m, 0, n}], {n, 0, 15}]
Table[Product[LucasL[2*k], {k, 0, n}], {n, 0, 15}]
Showing 1-7 of 7 results.
Comments