A087172 Greatest Fibonacci number that does not exceed n.
1, 2, 3, 3, 5, 5, 5, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Fibonacci Number.
Crossrefs
Programs
-
Haskell
a087172 = head . a035516_row -- Reinhard Zumkeller, Mar 10 2013
-
Maple
with(combinat): A087172 := proc (n) local j: for j while fibonacci(j) <= n do fibonacci(j) end do: fibonacci(j-1) end proc: seq(A087172(n), n = 1 .. 40); # Emeric Deutsch, Nov 11 2014 # Alternative N:= 100: # to get a(n) for n from 1 to N Fibs:= [seq(combinat:-fibonacci(i), i = 1 .. ceil(log[(1 + sqrt(5))/2](sqrt(5)*N)))]: A:= Vector(N): for i from 1 to nops(Fibs)-1 do A[Fibs[i] .. min(N,Fibs[i+1]-1)]:= Fibs[i] od: convert(A,list); # Robert Israel, Nov 11 2014
-
Mathematica
With[{rf=Reverse[Fibonacci[Range[10]]]},Flatten[Table[ Select[ rf,n>=#&, 1],{n,80}]]] (* Harvey P. Dale, Dec 08 2012 *) Flatten[Map[ConstantArray[Fibonacci[#],Fibonacci[#-1]]&,Range[15]]] (* Peter J. C. Moses, May 02 2022 *)
-
PARI
a(n)=my(k=log(n)\log((1+sqrt(5))/2)); while(fibonacci(k)<=n, k++); fibonacci(k--) \\ Charles R Greathouse IV, Jul 24 2012
Formula
a(n) = n - A066628(n). - Michel Marcus, Feb 02 2016
Sum_{n>=1} 1/a(n)^2 = Sum_{n>=1} Fibonacci(n)/Fibonacci(n+1)^2 = 1.7947486789... . - Amiram Eldar, Aug 16 2022
Comments