A087289 a(n) = 2^(2*n+1) + 1.
3, 9, 33, 129, 513, 2049, 8193, 32769, 131073, 524289, 2097153, 8388609, 33554433, 134217729, 536870913, 2147483649, 8589934593, 34359738369, 137438953473, 549755813889, 2199023255553, 8796093022209, 35184372088833, 140737488355329, 562949953421313, 2251799813685249
Offset: 0
Examples
a(0) = 3 since there are three pairs, (0,1), (1,0) and (1,1) of polynomials (f,g) in GF(2)[x] of degree at most 0 such that gcd(f,g) = 1.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- K. Morrison, Random polynomials over finite fields.
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Crossrefs
Programs
-
Magma
[2^(2*n+1) + 1: n in [0..30]]; // Vincenzo Librandi, May 16 2011
-
Mathematica
Table[2^(2 n + 1) + 1, {n, 0, 20}] (* or *) 3 NestList[4 # - 1 &, 1, 20] (* or *) CoefficientList[Series[(3 - 6 x)/((1 - x) (1 - 4 x)), {x, 0, 20}], x] (* Michael De Vlieger, Mar 03 2017 *)
-
PARI
a(n)=2^(2*n+1)+1 \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: (3-6*x)/((1-x)*(1-4*x)).
a(n) = 3*A007583(n).
a(n) = 4*a(n-1) - 3. - Lekraj Beedassy, Apr 29 2005
a(n) = 2^(2*n + 1)*a(-1-n) for all n in Z. - Michael Somos, Jan 11 2017
a(n) = A283070(n) - 1. - Peter M. Chema, Mar 02 2017
From Elmo R. Oliveira, Feb 22 2025: (Start)
E.g.f.: exp(x)*(2*exp(3*x) + 1).
a(n) = 5*a(n-1) - 4*a(n-2). (End)
Comments