cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A341549 a(n) = Sum_{k=1..n} (-1)^(n+k)*A087322(n,k).

Original entry on oeis.org

3, 6, 23, 50, 131, 294, 687, 1530, 3419, 7502, 16391, 35490, 76467, 163830, 349535, 742730, 1572875, 3320478, 6990519, 14680050, 30758243, 64312646, 134217743, 279620250, 581610171, 1207959534, 2505397607, 5189752130, 10737418259, 22190664342
Offset: 1

Views

Author

Petros Hadjicostas, Feb 15 2021

Keywords

Crossrefs

Cf. A087322.

Formula

a(n) = ((n + 1)*2^(n + 2) - 3 + (4*n + 1)*(-1)^(n + 1))/6.
G.f.: (4*x^3 - 2*x^2 + 3*x - 3)*x/((-1 + 2*x)^2*(-1 + x)*(1 + x)^2).

A087323 a(n) = (n+1) * 2^n - 1.

Original entry on oeis.org

0, 3, 11, 31, 79, 191, 447, 1023, 2303, 5119, 11263, 24575, 53247, 114687, 245759, 524287, 1114111, 2359295, 4980735, 10485759, 22020095, 46137343, 96468991, 201326591, 419430399, 872415231, 1811939327, 3758096383, 7784628223, 16106127359, 33285996543, 68719476735
Offset: 0

Views

Author

Amarnath Murthy, Sep 03 2003

Keywords

Comments

Row sums of triangle in A018900 (without the initial 0). - Reinhard Zumkeller, Jun 24 2009

Crossrefs

Cf. A087322 (a triangle which includes this sequence as the leading diagonal but without the initial zero).

Programs

Formula

a(n) = (n + 1) * 2^n - 1 = 2^n * n + 2^n - 1.
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3). G.f.: x*(3-4*x)/((1-x)*(1-2*x)^2). - Colin Barker, Mar 23 2012
a(n) = A001787(n+1) - 1. - Omar E. Pol, Nov 09 2013

Extensions

Edited and extended by David Wasserman, May 06 2005
Formula promoted to definition and offset adjusted to 0 by Alonso del Arte, Jan 31 2014

A190730 Let b(n,0) = n and b(n,k) = 2*b(n,k-1) + 1 for k > 0. Then a(n) = b(n,1) + b(n,2) + ... + b(n,n).

Original entry on oeis.org

3, 16, 53, 146, 367, 876, 2025, 4582, 10211, 22496, 49117, 106458, 229335, 491476, 1048529, 2228174, 4718539, 9961416, 20971461, 44040130, 92274623, 192937916, 402653113, 838860726, 1744830387, 3623878576, 7516192685, 15569256362, 32212254631, 66571992996
Offset: 1

Views

Author

J. M. Bergot, May 17 2011

Keywords

Comments

It turns out that b(n,k) = A087322(n,k) = (n + 1)*2^k - 1 for 1 <= k <= n (without the 0th column). - Petros Hadjicostas, Feb 15 2021

Examples

			One way to view it is to begin with n = 5, then 5 + 6 = 11 --> 11 + 12 = 23 --> 23 + 24 = 47 --> 47 + 48 = 95 --> 95 + 96 = 191. There are n steps, in this case 5, that give the sum 11 + 23 + 47 + 95 + 191 = 367. This is the same as (2*5+1) + (4*5+3) + (8*5+7) + (16*5+15) + (32*5+31). The formula gives (5+1)*2^(5+1) - 3*5 - 2 = 6*64 - 17 = 367.
		

Crossrefs

Programs

  • Magma
    [(n+1) * 2^(n+1) - 3*n - 2 : n in [1..30]]; // Vincenzo Librandi, Sep 29 2011
  • Mathematica
    LinearRecurrence[{6,-13,12,-4},{3,16,53,146},40] (* or *)
    Array[(#+1)2^(#+1)-3#-2&,40] (* Paolo Xausa, Oct 17 2023 *)

Formula

a(n) = (n+1) * 2^(n+1) - 3*n - 2 = A036289(n+1) - A016789(n).
G.f.: -x*(-3 + 2*x + 4*x^2) / ( (2*x-1)^2*(x-1)^2 ). - R. J. Mathar, May 29 2011
E.g.f.: exp(x)*(2*exp(x)*(1 + 2*x) - 2 - 3*x). - Stefano Spezia, Oct 16 2023
Showing 1-3 of 3 results.