cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087695 Numbers n such that n + 3 and n - 3 are both prime.

Original entry on oeis.org

8, 10, 14, 16, 20, 26, 34, 40, 44, 50, 56, 64, 70, 76, 86, 100, 104, 106, 110, 134, 154, 160, 170, 176, 194, 196, 226, 230, 236, 254, 260, 266, 274, 280, 310, 314, 334, 350, 356, 370, 376, 386, 436, 446, 460, 464, 506, 544, 560, 566, 574, 590, 596
Offset: 1

Views

Author

Zak Seidov, Sep 27 2003

Keywords

Comments

A010051(a(n)-3) * A010051(a(n)+3) = 1. - Reinhard Zumkeller, Nov 17 2015

Crossrefs

Programs

  • Haskell
    a087695 n = a087695_list !! (n-1)
    a087695_list = filter
       (\x -> a010051' (x - 3) == 1 && a010051' (x + 3) == 1) [2, 4 ..]
    -- Reinhard Zumkeller, Nov 17 2015
    
  • Maple
    ZL:=[]:for p from 1 to 600 do if (isprime(p) and isprime(p+6) ) then ZL:=[op(ZL),(p+(p+6))/2]; fi; od; print(ZL); # Zerinvary Lajos, Mar 07 2007
  • Mathematica
    lst={};Do[If[PrimeQ[n-3]&&PrimeQ[n+3], AppendTo[lst, n]], {n, 10^3}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 08 2008 *)
    Select[Range[600],AllTrue[#+{3,-3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 06 2015 *)
  • PARI
    p=2; q=3; forprime(r=5,1e3, if(q-p<7 && (q-p==6 || r-p==6), print1(p+3", ")); p=q; q=r) \\ Charles R Greathouse IV, May 22 2018

Formula

a(n) = A046117(n) - 3.