A087695 Numbers n such that n + 3 and n - 3 are both prime.
8, 10, 14, 16, 20, 26, 34, 40, 44, 50, 56, 64, 70, 76, 86, 100, 104, 106, 110, 134, 154, 160, 170, 176, 194, 196, 226, 230, 236, 254, 260, 266, 274, 280, 310, 314, 334, 350, 356, 370, 376, 386, 436, 446, 460, 464, 506, 544, 560, 566, 574, 590, 596
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a087695 n = a087695_list !! (n-1) a087695_list = filter (\x -> a010051' (x - 3) == 1 && a010051' (x + 3) == 1) [2, 4 ..] -- Reinhard Zumkeller, Nov 17 2015
-
Maple
ZL:=[]:for p from 1 to 600 do if (isprime(p) and isprime(p+6) ) then ZL:=[op(ZL),(p+(p+6))/2]; fi; od; print(ZL); # Zerinvary Lajos, Mar 07 2007
-
Mathematica
lst={};Do[If[PrimeQ[n-3]&&PrimeQ[n+3], AppendTo[lst, n]], {n, 10^3}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 08 2008 *) Select[Range[600],AllTrue[#+{3,-3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 06 2015 *)
-
PARI
p=2; q=3; forprime(r=5,1e3, if(q-p<7 && (q-p==6 || r-p==6), print1(p+3", ")); p=q; q=r) \\ Charles R Greathouse IV, May 22 2018
Formula
a(n) = A046117(n) - 3.
Comments