A087897 Number of partitions of n into odd parts greater than 1.
1, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 10, 12, 13, 15, 18, 20, 23, 27, 30, 34, 40, 44, 50, 58, 64, 73, 83, 92, 104, 118, 131, 147, 166, 184, 206, 232, 256, 286, 320, 354, 394, 439, 485, 538, 598, 660, 730, 809, 891, 984, 1088, 1196, 1318, 1454, 1596, 1756
Offset: 0
Examples
1 + x^3 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + 3*x^13 + ... q + q^73 + q^121 + q^145 + q^169 + q^193 + 2*q^217 + 2*q^241 + 2*q^265 + ... a(10)=2 because we have [7,3] and [5,5]. From _Joerg Arndt_, Jun 11 2013: (Start) There are a(22)=13 symmetric unimodal compositions of 22+3=25 where the maximal part appears three times: 01: [ 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 ] 02: [ 1 1 1 1 1 1 2 3 3 3 2 1 1 1 1 1 1 ] 03: [ 1 1 1 1 1 5 5 5 1 1 1 1 1 ] 04: [ 1 1 1 1 2 2 3 3 3 2 2 1 1 1 1 ] 05: [ 1 1 1 2 5 5 5 2 1 1 1 ] 06: [ 1 1 2 2 2 3 3 3 2 2 2 1 1 ] 07: [ 1 1 3 5 5 5 3 1 1 ] 08: [ 1 1 7 7 7 1 1 ] 09: [ 1 2 2 5 5 5 2 2 1 ] 10: [ 1 4 5 5 5 4 1 ] 11: [ 2 2 2 2 3 3 3 2 2 2 2 ] 12: [ 2 3 5 5 5 3 2 ] 13: [ 2 7 7 7 2 ] (End) From _Gus Wiseman_, Feb 16 2021: (Start) The a(7) = 1 through a(19) = 8 partitions are the following (A..J = 10..19). The Heinz numbers of these partitions are given by A341449. 7 53 9 55 B 75 D 77 F 97 H 99 J 333 73 533 93 553 95 555 B5 755 B7 775 3333 733 B3 753 D3 773 D5 955 5333 933 5533 953 F3 973 33333 7333 B33 5553 B53 53333 7533 D33 9333 55333 333333 73333 (End)
References
- J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), pp. 111-112. see Eq. I
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000 (n = 0..1000 from Alois P. Heinz)
- C. Ballantine and M. Merca, Padovan numbers as sums over partitions into odd parts, Journal of Inequalities and Applications, (2016) 2016:1; doi.
- B. C. Berndt, B. Kim, and A. J. Yee, Ramanujan's lost notebook: Combinatorial proofs of identities associated with Heine's transformation or partial theta functions, J. Comb. Thy. Ser. A, 117 (2010), 957-973.
- Howard D. Grossman, Problem 228, Mathematics Magazine, 28 (1955), p. 160.
- R. K. Guy, Two theorems on partitions, Math. Gaz., 42 (1958), 84-86. Math. Rev. 20 #3110.
- Cristiano Husu, The butterfly sequence: the second difference sequence of the numbers of integer partitions with distinct parts, its pentagonal number structure, its combinatorial identities and the cyclotomic polynomials 1-x and 1+x+x^2, arXiv:1804.09883 [math.NT], 2018.
- James Mc Laughlin, Andrew V. Sills, and Peter Zimmer, Rogers-Ramanujan-Slater Type Identities, Electronic J. Combinatorics, DS15, 1-59, May 31, 2008.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
The ordered version is A000931.
The version for factorizations is A340101.
Partitions whose only even part is the smallest are counted by A341447.
The Heinz numbers of these partitions are given by A341449.
A025147 counts strict partitions with no 1's.
A025148 counts strict partitions with no 1's or 2's.
Programs
-
Haskell
a087897 = p [3,5..] where p [] _ = 0 p _ 0 = 1 p ks'@(k:ks) m | m < k = 0 | otherwise = p ks' (m - k) + p ks m -- Reinhard Zumkeller, Aug 12 2011
-
Maple
To get 128 terms: t4 := mul((1+x^(2^n)),n=0..7); t5 := mul((1+x^k),k=1..128): t6 := series(t5/t4,x,100); t7 := seriestolist(t6); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<3, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i)))) end: a:= n-> b(n, n-1+irem(n, 2)): seq(a(n), n=0..80); # Alois P. Heinz, Jun 11 2013
-
Mathematica
max = 65; f[x_] := Product[ 1/(1 - x^(2k+1)), {k, 1, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 16 2011, after Emeric Deutsch *) b[n_, i_] := b[n, i] = If[n==0, 1, If[i<3, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]] ]; a[n_] := b[n, n-1+Mod[n, 2]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 01 2015, after Alois P. Heinz *) Flatten[{1, Table[PartitionsQ[n+1] - PartitionsQ[n], {n, 0, 80}]}] (* Vaclav Kotesovec, Dec 01 2015 *) Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&OddQ[Times@@#]&]],{n,0,30}] (* Gus Wiseman, Feb 16 2021 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - x) * eta(x^2 + A) / eta(x + A), n))} /* Michael Somos, Nov 13 2011 */
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A087897_T(n,k): if n==0: return 1 if k<3 or n<0: return 0 return A087897_T(n,k-2)+A087897_T(n-k,k) def A087897(n): return A087897_T(n,n-(n&1^1)) # Chai Wah Wu, Sep 23 2023, after Alois P. Heinz
Formula
Expansion of q^(-1/24) * (1 - q) * eta(q^2) / eta(q) in powers of q.
Expansion of (1 - x) / chi(-x) in powers of x where chi() is a Ramanujan theta function.
G.f.: 1 + x^3 + x^5*(1 + x) + x^7*(1 + x)*(1 + x^2) + x^9*(1 + x)*(1 + x^2)*(1 + x^3) + ... [Glaisher 1876]. - Michael Somos, Jun 20 2012
G.f.: Product_{k >= 1} 1/(1-x^(2*k+1)).
G.f.: Product_{k >= 1, k not a power of 2} (1+x^k).
G.f.: Sum_{k >= 1} x^(3*k)/Product_{j = 1..k} (1 - x^(2*j)). - Emeric Deutsch, Mar 30 2006
a(n) ~ exp(Pi*sqrt(n/3)) * Pi / (8 * 3^(3/4) * n^(5/4)) * (1 - (15*sqrt(3)/(8*Pi) + 11*Pi/(48*sqrt(3)))/sqrt(n) + (169*Pi^2/13824 + 385/384 + 315/(128*Pi^2))/n). - Vaclav Kotesovec, Aug 30 2015, extended Nov 04 2016
G.f.: 1/(1 - x^3) * Sum_{n >= 0} x^(5*n)/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 - x^3)*(1 - x^5)) * Sum_{n >= 0} x^(7*n)/Product_{k = 1..n} (1 - x^(2*k)) = ..., extending Deutsch's result dated Mar 30 2006. - Peter Bala, Jan 15 2021
G.f.: Sum_{n >= 0} x^(n*(2*n+1))/Product_{k = 2..2*n+1} (1 - x^k). (Set z = x^3 and q = x^2 in Mc Laughlin et al., Section 1.3, Entry 7.) - Peter Bala, Feb 02 2021
a(2*n+1) = Sum{j>=1} A008284(n+1-j,2*j - 1) and a(2*n) = Sum{j>=1} A008284(n-j, 2*j). - Gregory L. Simay, Sep 22 2023
Comments