cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088009 Number of "sets of odd lists", cf. A000262.

Original entry on oeis.org

1, 1, 1, 7, 25, 181, 1201, 10291, 97777, 1013545, 12202561, 151573951, 2173233481, 31758579997, 524057015665, 8838296029291, 164416415570401, 3145357419120721, 65057767274601217, 1391243470549894135, 31671795881695430521, 747996624368605997701
Offset: 0

Views

Author

Vladeta Jovovic, Nov 02 2003

Keywords

Comments

The Brauer algebra has a basis consisting of all graphs on the vertex set {1,...,2n} whose vertices all have degree 1. The multiplication is defined in Halverson and Ram. a(n) is also the number of idempotent basis elements (i.e., those satisfying b^2=b) of the Brauer algebra. - James East, Dec 27 2013
From Peter Bala, Nov 26 2017: (Start)
The sequence terms have the form 6*m + 1 (follows from the recurrence).
a(n+k) = a(n) (mod k) for all n and k. It follows that the sequence a(n) (mod k) is periodic with the exact period dividing k. For example, modulo 10 the sequence becomes 1, 1, 1, 7, 5, 1, 1, 1, 7, 5, ... with exact period 5. (End)

Examples

			From _R. J. Mathar_, Feb 01 2022 (Start):
Examples of partitions of elements {1,2,..n} into sets of lists where each list contains an odd number of elements:
n=1: One set where the element is the list.
n=2: One set where each of the 2 elements is its own list.
n=3: One set where each of the 3 elements is its own list, plus 6=3! sets of a list of all 3 elements.
n=4: One set where each of the 4 elements is its own list, plus 4*3! sets where one (4 choices) element is its own list and the remaining 3 elements are in another list.
n=5: One set where each of the 5 elements is its own list, plus 5!=120 sets where all 5 elements are in the same list, plus binomial(5,2)*3!=60 sets where two elements are in their own lists and the other 3 in a third list. (End)
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> `if`(n-k mod 2 = 0, binomial((n+k)/2, k), 0):
    a:= n-> n! * add(T(n-1, k-1)/k!, k=0..n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 07 2011
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add((i->
          a(n-i)*binomial(n-1, i-1)*i!)(2*j+1), j=0..(n-1)/2))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 01 2022
  • Mathematica
    a[n_] := SeriesCoefficient[ Exp[x/(1 - x^2) ], {x, 0, n}]*n!; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 24 2015 *)
  • PARI
    x='x+O('x^33);
    Vec(serlaplace(exp(x/(1-x^2))))
    /* Joerg Arndt, Mar 09 2011 */

Formula

E.g.f.: exp(x/(1-x^2)).
a(n) = n!*Sum_{k=1..n} A168561(n-1,k-1)/k!. - Vladimir Kruchinin, Mar 07 2011
E.g.f.: 1 + x/(G(0)-x) where G(k)= (1-x^2)*k + 1+x-x^2 - x*(1-x^2)*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 02 2012
E.g.f.: 1 + x/(1+x)*(G(0) - 1) where G(k) = 1 + 1/(1+x^2)/(k+1)/(1-x/(x+(1)/G(k+1))), (continued fraction). - Sergei N. Gladkovskii, Feb 04 2013
a(n) ~ 2^(-3/4)*n^(n-1/4)*exp(sqrt(2*n)-n) * (1-11/(24*sqrt(2*n))). - Vaclav Kotesovec, Aug 10 2013
D-finite with recurrence a(n) = a(n-1) + 2*(n-2)*(n-1)*a(n-2) + (n-2)*(n-1)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Aug 10 2013
E.g.f.: Product_{n >= 1} (1 + x^n)^(phi(n)/n) = Product_{n >= 0} ( (1 + x^(2*n+1))/(1 - x^(2*n+1)) )^( phi(2*n+1)/(4*n + 2) ), where phi(n) = A000010(n) is the Euler totient function. Cf. A066668 and A000262. - Peter Bala, Jan 01 2014
E.g.f.: Product_{k>0} exp(x^(2*k-1)). - Seiichi Manyama, Oct 10 2017

Extensions

Prepended a(0)=1 by Joerg Arndt, Jul 29 2012