cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A088136 Primes such that sum of first and last digits is prime.

Original entry on oeis.org

11, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 131, 151, 181, 191, 211, 223, 229, 233, 239, 241, 251, 263, 269, 271, 281, 283, 293, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 601, 607, 617, 631, 641, 647, 661, 677, 691
Offset: 1

Views

Author

Zak Seidov, Sep 20 2003

Keywords

Crossrefs

Cf. A008040 (primes), A010051 (isprime), A000030 (first digit of n), A010879 (last digit of n).

Programs

  • Mathematica
    Select[Prime[Range[400]],PrimeQ[First[IntegerDigits[#]]+ Last[ IntegerDigits[ #]]]&] (* Harvey P. Dale, Jun 23 2017 *)
  • PARI
    select( {is_A088136(p)=isprime(p\10^logint(p,10)+p%10)&&isprime(p)}, primes(99)) \\ M. F. Hasler, Apr 23 2024
  • Python
    from sympy import isprime, primerange
    def ok(p): s = str(p); return isprime(int(s[0]) + int(s[-1]))
    def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]
    print(aupto(691)) # Michael S. Branicky, Nov 23 2021
    

A089392 Magnanimous primes: primes with the property that inserting a "+" in any place between two digits yields a sum which is prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 227, 229, 281, 401, 443, 449, 467, 601, 607, 647, 661, 683, 809, 821, 863, 881, 2221, 2267, 2281, 2447, 4001, 4027, 4229, 4463, 4643, 6007, 6067, 6803, 8009, 8221, 8821, 20261, 24407, 26881, 28429, 40427
Offset: 1

Views

Author

Amarnath Murthy, Nov 10 2003

Keywords

Comments

Original definition: Let the digits of n be abcd. Then bcd+a, cd+ab, d+abc, abcd, etc. must all be primes. If n is a k-digit number then it must produce k such primes.
Partition the digits of n into two groups by placing a '+' sign anywhere inside; the result of the expression is prime in every case. Conjecture: sequence is infinite. 11 is the largest term with all odd digits. 2 is the only member with all even digits. Observation: all two-digit primes with the most significant digit even are members.
In contradiction to the above conjecture, it is rather expected that this sequence is finite, cf. the link to C. Rivera's "Puzzle 401", and G. Resta's web page. Concerning the statement about 2 and 11, one can say that all terms except 2, 11 and 101 consist of even digits followed by a final odd digit. - M. F. Hasler, Dec 25 2014
Primes among the magnanimous numbers A252996. - M. F. Hasler, Dec 25 2014

Examples

			2267 is a member which gives primes 2+267 = 269, 22+67 = 89, 226+7 = 233 and 2267 itself.
		

Crossrefs

Programs

  • Maple
    with(combinat): ds:=proc(s) local j: RETURN(add(s[j]*10^(j-1),j=1..nops(s))):end: for d from 1 to 6 do sch:=[seq([1,op(i),d+1],i=[[],seq([j],j=2..d)])]: for n from 10^(d-1) to 10^d-1 do sn:=convert(n,base,10): fl:=0: for s in sch do m:=add(j,j=[seq(ds(sn[s[i]..s[i+1]-1]),i=1..nops(s)-1)]): if not isprime(m) then fl:=1: break fi od: if fl=0 then printf("%d, ",n) fi od od: # C. Ronaldo
  • Mathematica
    mpQ[n_]:=Module[{idn=IntegerDigits[n],len},len=Length[idn];And@@PrimeQ[ Table[ FromDigits[Take[idn,i]]+FromDigits[Take[idn,-(len-i)]],{i,len}]]]; Select[Range[41000],mpQ] (* Harvey P. Dale, Nov 06 2013 *)
  • PARI
    is_A089392(n)={!for(i=1,#Str(n),ispseudoprime([1,1]*(divrem(n,10^i)))||return)} \\ M. F. Hasler, Dec 25 2014
    
  • Python
    from sympy import isprime
    def ok(n):
        if not isprime(n): return False
        s = str(n)
        return all(isprime(int(s[:i])+int(s[i:])) for i in range(1, len(s)))
    print([k for k in range(357) if ok(k)]) # Michael S. Branicky, Oct 14 2024

Extensions

Corrected and extended by C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 25 2004
Comments edited by Zak Seidov, Jan 29 2013
Edited by M. F. Hasler, Dec 25 2014

A088133 Sum of first and last digits of n. Different from A115299.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14
Offset: 0

Views

Author

Zak Seidov, Sep 20 2003

Keywords

Crossrefs

Cf. A000030 (first digit of n), A010879 (last digit of n).

Programs

  • Mathematica
    Total[{First[IntegerDigits[#]],Last[IntegerDigits[#]]}]&/@Range[90] (* Harvey P. Dale, Aug 21 2018 *)
  • PARI
    apply( {A088133(n)=n\10^logint(n+!n, 10)+n%10}, [0..99]) \\ M. F. Hasler, Apr 22 2024
    
  • Python
    list(map(A088133 := lambda n: int(str(n)[0])+n%10, range(99))) # M. F. Hasler, Apr 22 2024

Formula

a(n) = A000030(n) + A010879(n). - M. F. Hasler, Apr 22 2024

Extensions

Extended to a(0) = 0 by M. F. Hasler, Apr 22 2024

A088135 Sum of first and last digits of n-th prime.

Original entry on oeis.org

4, 6, 10, 14, 2, 4, 8, 10, 5, 11, 4, 10, 5, 7, 11, 8, 14, 7, 13, 8, 10, 16, 11, 17, 16, 2, 4, 8, 10, 4, 8, 2, 8, 10, 10, 2, 8, 4, 8, 4, 10, 2, 2, 4, 8, 10, 3, 5, 9, 11, 5, 11, 3, 3, 9, 5, 11, 3, 9, 3, 5, 5, 10, 4, 6, 10, 4, 10, 10, 12, 6, 12, 10, 6, 12, 6, 12, 10, 5, 13, 13, 5, 5, 7, 13, 7, 13
Offset: 1

Views

Author

Zak Seidov, Sep 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    sfl[p_]:=Module[{idn=IntegerDigits[p]},idn[[1]]+idn[[-1]]]; sfl/@Prime[Range[90]] (* Harvey P. Dale, Jan 31 2023 *)

A252996 Magnanimous numbers: numbers such that the sum obtained by inserting a "+" anywhere between two digits gives a prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 16, 20, 21, 23, 25, 29, 30, 32, 34, 38, 41, 43, 47, 49, 50, 52, 56, 58, 61, 65, 67, 70, 74, 76, 83, 85, 89, 92, 94, 98, 101, 110, 112, 116, 118, 130, 136, 152, 158, 170, 172, 203, 209, 221, 227, 229, 245, 265, 281, 310, 316, 334, 338, 356
Offset: 1

Views

Author

M. F. Hasler, Dec 25 2014

Keywords

Comments

Inclusion of the single-digit terms is conventional: here the property is voidly satisfied since no sum can be constructed by inserting a + sign between two digits, therefore all possible sums are prime. (It is not allowed to prefix a leading zero (e.g., to forbid 4 = 04 = 0+4) since in that case all terms must be prime and one would get A089392.)
All terms different from 20 and not of the form 10^k+1 have the last digit of opposite parity than that of all other digits.
The sequence is marked as "finite", although we do not have a rigorous proof for this, only very strong evidence (numerical and probabilistic). G. Resta has checked that up to 5e16 the only magnanimous numbers with more than 11 digits are 5391391551358 and 97393713331910, the latter being probably the largest element of this sequence. In that case the 10+33+79+104+112+96+71+35+18+6+5+0+1+1 = 571 terms listed in Wilson's b-file are the complete list, which is what the keyword "full" stands for.

Examples

			245 is in the sequence because the numbers 2 + 45 = 47 and 24 + 5 = 29 are both prime. See the first comment for the single-digit terms.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local d;
      for d from 1 to ilog10(n)-1 do
        if not isprime(floor(n/10^d)+(n mod 10^d)) then return false fi
      od:
      true
    end proc:
    select(filter, [$0..10^5]); # Robert Israel, Dec 25 2014
  • Mathematica
    fQ[n_] := Block[{idn = IntegerDigits@ n, lng = Floor@ Log10@ n}, Union@ PrimeQ@ Table[ FromDigits[ Take[ idn, i]] + FromDigits[ Take[ idn, -lng + i -1]], {i, lng}] == {True}]; (* or *)
    fQ[n_] := Block[{lng = Floor@ Log10@ n}, Union@ PrimeQ[ Table[ Floor[n/10^k] + Mod[n, 10^k], {k, lng}]] == {True}];
    fQ[2] = fQ[3] = fQ[5] = fQ[7] = True; Select[ Range@ 500, fQ]
    (* Robert G. Wilson v, Dec 26 2014 *)
    mnQ[n_]:=AllTrue[Total/@Table[FromDigits/@TakeDrop[IntegerDigits[n],i],{i,IntegerLength[n]-1}],PrimeQ]; Join[Range[0,9],Select[Range[ 10,400], mnQ]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 26 2017 *)
  • PARI
    is(n)={!for(i=1,#Str(n)-1,ispseudoprime([1,1]*(divrem(n,10^i)))||return)}
    t=0;vector(100,i,until(is(t++),);t)
    
  • Python
    from sympy import isprime
    def ok(n):
        s = str(n)
        return all(isprime(int(s[:i])+int(s[i:])) for i in range(1, len(s)))
    print([k for k in range(357) if ok(k)]) # Michael S. Branicky, Oct 14 2024

A108660 Square-loop primes.

Original entry on oeis.org

2, 13, 31, 79, 97, 227, 881, 1013, 2797, 3181, 3631, 8101, 22727, 81001, 101363, 109013, 131363, 181813, 272227, 310181, 310901, 318181, 318881, 631013, 636313, 810401, 818101, 901097, 904097, 972227, 1018813, 1090013, 1810013, 2272727
Offset: 1

Views

Author

Zak Seidov, Jun 16 2005

Keywords

Comments

Primes such that each pair of adjacent digits (and also the first and the last ones) sums up to a square. First term is arguable since there is 'no pair of adjacent digits', but there are the "first" and "last" digits.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[200000]],And@@(IntegerQ[Sqrt[#]]&/@(Total/@Partition[ IntegerDigits[#],2,1,1]))&] (* Harvey P. Dale, Mar 03 2014 *)

A108659 Square-chain primes (including square-loop primes).

Original entry on oeis.org

2, 13, 31, 79, 97, 101, 109, 131, 181, 227, 313, 401, 409, 631, 727, 797, 881, 1009, 1013, 1097, 2797, 3109, 3181, 3631, 4001, 4013, 7901, 8101, 9001, 9013, 10009, 10181, 10909, 10979, 13109, 18131, 18181, 22279, 22727, 27901, 31013, 36313
Offset: 1

Views

Author

Zak Seidov, Jun 16 2005

Keywords

Comments

Primes such that each pair of adjacent digits sums up to a square. First term is a square-loop prime, cf. A108660.

Crossrefs

Programs

  • Mathematica
    Join[{2},Select[Prime[Range[5,4000]],PrimeQ[#]&&AllTrue[Sqrt[#]&/@(Total/@Partition[ IntegerDigits[ #],2,1]),IntegerQ]&]] (* Harvey P. Dale, Jun 02 2024 *)

A252495 Restricted magnanimous numbers: numbers such that the sum obtained by inserting a "+" anywhere between two digits gives a prime, but no "leading zeros" may appear.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 16, 20, 21, 23, 25, 29, 30, 32, 34, 38, 41, 43, 47, 49, 50, 52, 56, 58, 61, 65, 67, 70, 74, 76, 83, 85, 89, 92, 94, 98, 110, 112, 116, 118, 130, 136, 152, 158, 170, 172, 221, 227, 229, 245, 265, 281, 310, 316, 334, 338, 356
Offset: 1

Views

Author

M. F. Hasler, Dec 28 2014

Keywords

Comments

Inclusion of the single-digit terms is conventional: here the property is vacuously satisfied since no sum can be constructed by inserting a + sign between two digits, therefore all possible sums are prime. (It is not allowed to prefix a leading zero (e.g., to forbid 4 = 04 = 0+4) since in that case all terms must be prime and one would get A089392.)
The restriction on leading zeros means that numbers with digit 0 other than in the last position are excluded, so this sequence equals A252996 with terms in A252480 removed.
Since all primes > 2 are odd, all terms different from 11 and 20 have the last digit of opposite parity to that of all other digits.
As A252996, this sequence is "finite" (without rigorous proof), and up to 5e16 the only terms with more than 11 digits are 5391391551358 and 97393713331910, the latter being probably the largest element of this sequence (due to Giovanni Resta).
(See links for "intellectual ownership": The sequence (without single-digit terms) was suggested by Eric Angelini, a first list of terms computed by Lars Blomberg, then others. Hans Havermann observed that this is a variant of what had been termed "magnanimous numbers" at least 10 years ago by A. Murthy, G. Resta and/or C. Rivera, cf. A089392 and links.)

Examples

			110 is in the sequence since 1+10=11 and 11+0 = 11 are both prime.
101 is not in the sequence because although 10+1 = 11 and 1+01 = 2 are prime, the latter sum is forbidden since 01 has a leading zero.
Number, smallest and largest of the n-digit terms:
| n   #     min    max
| 1  10      0      9
| 2  33      11     98
| 3  69     110     998
| 4  90     1112    9910
| 5  81    11116    99998
| 6  71    111112   999994
| 7  54   1115756   9959374
| 8  25   11771992  95559998
| 9   9  117711170  995955112
|10   4  1777137770 9151995592
|11   4 22226226625 46884486265
|12   0  -
|13   1     5391391551358
|14   1     97393713331910
|15   0  -
		

Crossrefs

Programs

  • PARI
    is(n)=!for(i=1,#Str(n)-1,ispseudoprime([1,1]*(divrem(n,10^i)))||return)&&(n<100||vecmin(digits(n\10)))
    t=0;vector(100,i,until(is(t++),);t)

A086924 Primes such that sum of the first and last digits is a square.

Original entry on oeis.org

2, 13, 31, 79, 97, 103, 113, 163, 173, 193, 227, 257, 277, 311, 331, 613, 643, 653, 673, 683, 709, 719, 739, 769, 811, 821, 881, 907, 937, 947, 967, 977, 997, 1013, 1033, 1063, 1093, 1103, 1123, 1153, 1163, 1193, 1213, 1223
Offset: 1

Views

Author

Zak Seidov, Sep 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    fldsQ[n_]:=Module[{idn=IntegerDigits[n]},IntegerQ[Sqrt[ idn[[1]] + idn[[-1]]]]]; Select[Prime[Range[200]],fldsQ] (* Harvey P. Dale, Aug 12 2017 *)
  • PARI
    okdigs(n) = digs = digits(n); issquare(digs[1]+digs[#digs]);
    isok(n) = isprime(n) && okdigs(n); \\ Michel Marcus, Oct 05 2013
Showing 1-9 of 9 results.