A088164 Wolstenholme primes: primes p such that binomial(2p-1,p-1) == 1 (mod p^4).
16843, 2124679
Offset: 1
References
- Richard K. Guy, Unsolved Problems in Number Theory, Sect. B31.
- Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem (Springer, 1979).
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 23.
Links
- Ronald Bruck, Wolstenholme's Theorem, Stirling Numbers, and Binomial Coefficients.
- Joe Buhler, Richard Crandall, Reijo Ernvall and Tauno Metsänkylä, Irregular primes and cyclotomic invariants to four million, Math. Comp., Vol. 61, No. 203 (1993), pp. 151-153.
- Chris Caldwell, The Prime Glossary, Wolstenholme prime.
- Leonardo Carofiglio, Luigi De Filpo, and Alessandro Gambini, p-adic valuation of harmonic sums and their connections with Wolstenholme primes, arXiv:2303.15010 [math.NT], 2023.
- Keith Conrad, The p-adic growth of harmonic sums.
- Shehzad Hathi, Michael J. Mossinghoff, and Timothy S. Trudgian, Wolstenholme and Vandiver primes, The Ramanujan Journal, (2021); arXiv version, 2101.11157 [math.NT], 2021.
- Richard J. McIntosh, On the converse of Wolstenholme's theorem, Acta Arithmetica, Vol. 71, No. 4 (1995), pp. 381-389.
- Richard J. McIntosh and Eric L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp. Vol 76, No. 260 (2007), pp. 2087-2094.
- R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
- Romeo Meštrović, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), Article 14.8.4.
- Romeo Meštrović, Congruences for Wolstenholme Primes, arXiv:1108.4178 [math.NT], 2011.
- Romeo Meštrović, Congruences for Wolstenholme Primes, Czechoslovak Mathematical Journal, Vol. 65 (2015), pp. 237-253.
- Romeo Meštrović, A congruence modulo n^3 involving two consecutive sums of powers and its applications, arXiv:1211.4570 [math.NT], 2012.
- Romeo Meštrović, Several generalizations and variations of Chu-Vandermonde identity, arXiv:1807.10604 [math.CO], 2018.
- Jonathan Sondow, Extending Babbage's (non-)primality tests, in Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, CANT 2015 and 2016, New York, 2017, pp. 269-277; arXiv:1812.07650 [math.NT], 2018.
- Eric Weisstein's World of Mathematics, Wolstenholme Prime.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes.
- Wikipedia, Wolstenholme prime.
- Jianqiang Zhao, Bernoulli numbers, Wolstenholme's theorem, and p^5 variations of Lucas' theorem, J. Number Theory, Vol. 123 (2007), pp. 18-26.
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(2*10^4)| (Binomial(2*p-1,p-1) mod (p^4)eq 1)]; // Vincenzo Librandi, May 02 2015
-
Mathematica
For[i = 2, i <= 20000, i++, {If[PrimeQ[i] && Mod[Binomial[2*i - 1, i - 1], i^4] == 1, Print[i]]}] (* Dylan Delgado, Mar 02 2021 *)
-
PARI
forprime(n=2, 10^9, if(Mod(binomial(2*n-1, n-1), n^4)==1, print1(n, ", "))); \\ Felix Fröhlich, May 18 2014
Formula
A000984(a(n)) = 2 mod a(n)^4. - Stanislav Sykora, Aug 26 2014
A099908(a(n)) == 1 mod a(n)^4. - Jonathan Sondow, Nov 24 2015
A034602(PrimePi(a(n))) == 0 mod a(n) and A263882(PrimePi(a(n))) == 0 mod a(n)^2. - Jonathan Sondow, Dec 03 2015
Comments