A085000
Maximal determinant of an n X n matrix using the integers 1 to n^2.
Original entry on oeis.org
1, 10, 412, 40800, 6839492, 1865999570, 762150368499
Offset: 1
The following 3 X 3 matrix is one of 36 whose determinant is 412 (there are also 36 whose determinant is -412):
9 3 5
4 8 1
2 6 7
Results from a specially adapted hill-climbing algorithm strongly suggest that a(5) = 6839492. a(6) is at least 1862125166. Heuristically, a(n) is approximately 0.44*n^(2.06*n), suggesting that a(7) is close to 6.8*10^11. - Tim Paulden (timmy(AT)cantab.net), Sep 21 2003
a(5) confirmed by _Robert Israel_ and _Hugo Pfoertner_. A corresponding matrix is ((25 15 9 11 4) (7 24 14 3 17) (6 12 23 20 5) (10 13 2 22 19) (16 1 18 8 21) ). - _Hugo Pfoertner_, Sep 23 2003
a(6) found with FORTRAN program given at Pfoertner link. A corresponding matrix is ((36 24 21 17 5 8) ( 3 35 25 15 23 11) (13 7 34 16 10 31) (14 22 2 33 12 28) (20 4 19 29 32 6) (26 18 9 1 30 27) ). - _Hugo Pfoertner_, Sep 23 2003
a(7) is the determinant of the matrix ((46 42 15 2 27 24 18) (9 48 36 30 7 14 31) (39 11 44 34 13 29 5) (26 22 17 41 47 1 21) (20 8 40 6 33 23 45) (4 28 19 25 38 49 12) (32 16 3 37 10 35 43)). Although no proof for the optimality of a(7) is available, the results of an extensive computational search make the existence of a better solution extremely unlikely. A total of approximately 15 CPU years on SGI Origin 3000 and of 3.8 CPU years on SGI Altix 3000 computers was used for this result.
- Sela Fried and Toufik Mansour, On the maximal sum of the entries of a matrix power, arXiv:2308.00348 [math.CO], 2023.
- Ortwin Gasper, Hugo Pfoertner and Markus Sigg, An Upper Bound for the Determinant of a Matrix with given Entry Sum and Square Sum, JIPAM, Journal of Inequalities in Pure and Applied Mathematics, Volume 10, Issue 3, Article 63, 2008.
- Hugo Pfoertner, Maximal determinant of matrix with elements 1..n. FORTRAN program.
- Markus Sigg, Gasper's determinant theorem, revisited, arXiv:1804.02897 [math.CO], 2018.
- Eric Weisstein's World of Mathematics, Square Matrix
- Index entries for sequences related to maximal determinants
Cf.
A088214,
A088215,
A088216,
A088217,
A088237,
A180087 [upper bounds for a(n)],
A180128,
A221976,
A301371,
A301532,
A301533,
A309985,
A325900,
A350566.
-
Needs["DiscreteMath`Combinatorica`"]; n=3; n2=n^2; dMax=0; mMax={}; p=Range[n2]; Do[m=Partition[p, n]; d=Det[m]; If[d>dMax, dMax=d; mMax=m]; p=NextPermutation[p], {k, n2!}]; {dMax, mMax} (* T. D. Noe *)
-
vectomat(v)=my(n=sqrtint(#v));matrix(n,n,i,j,v[n*(i-1)+j])
a(n)=my(m,t,M); n*=n; for(k=0,(n-1)!-1, t=matdet(M=vectomat(numtoperm(n,k))); if(abs(t)>m, m=abs(t); print(t" "M)));m \\ Charles R Greathouse IV, Sep 13 2013
a(4) from Marsac Laurent (jko(AT)rox0r.net), Sep 15 2003
Entry edited by
N. J. A. Sloane, Nov 22 2006, to remove some erroneous entries. Further edits Nov 25 2006.
A088216
Smallest nonnegative number not expressible as determinant of an n X n matrix with elements 1..n^2.
Original entry on oeis.org
0, 324, 38831, 6773999, 1859163031
Offset: 2
a(2)=0 because the 2 X 2 determinant of a matrix with entries that are permutations of 1,2,3,4 can only assume the values +-2,+-5,+-10.
A088217
Number of distinct values that can be assumed by the determinant of an n X n matrix whose entries are all permutations of the numbers 1..n^2.
Original entry on oeis.org
1, 6, 777, 79455, 13602389, 3722956267
Offset: 1
a(2)=6 because the determinants of the 24 2 X 2 matrices whose entries are all permutations of 1,2,3,4 can only assume the values -10,-5,-2,2,5,10.
-
C See link given in A088238.
-
f[n_] := (p = Permutations[ Table[i, {i, n^2}]]; Length[ Union[ Table[ Det[ Partition[ p[[i]], n]], {i, 1, (n^2)!}]]]) (* Robert G. Wilson v *)
A088214
Numbers less than the maximum possible determinant A085000(3)=412 not occurring as determinant of a 3 X 3 matrix with elements 1..9.
Original entry on oeis.org
324, 329, 355, 357, 358, 362, 364, 365, 367, 373, 375, 378, 381, 383, 386, 387, 394, 397, 399, 401, 403, 406, 409, 411
Offset: 1
398 is not in the sequence because it can be expressed as det ((9 3 5)(4 8 2)(1 6 7)).
A136609
(1/(n!)^2) * number of ways to arrange the consecutive numbers 1...n^2 in an n X n matrix with determinant = 0.
Original entry on oeis.org
0, 0, 76, 14392910
Offset: 1
a(1)=0 because det((1))/=0, a(2)=0, because the only possible determinants of a matrix with elements {1,2,3,4} are +-2, +-5 and +-10.
A136608
(1/576)*number of ways to express n as the determinant of a 4 X 4 matrix with elements 1...16.
Original entry on oeis.org
14392910, 1550244, 2188523, 2029381, 2828486, 1905576, 2901300, 1813327, 3097897, 2169409, 2695559, 1697839, 3767494, 1682771, 2548638, 2503246, 3286048, 1684275, 3093051, 1655317, 3500693, 2374117, 2403536, 1619568
Offset: 0
a(40800)=1 because the only 4X4 matrices with elements 1...16 with the determinant 40800 are the 576 combinations of determinant-preserving row and column permutations of ((16 6 4 9)(8 13 11 1)(3 12 5 14)(7 2 15 10)).
A180345
Lexicographically ordered 3X3 matrices containing numbers 1..9 with maximal determinant = 412.
Original entry on oeis.org
148726593, 157836492, 175429863, 184539762, 249715683, 267935481, 276418953, 294638751, 359814672, 368924571, 386517942, 395627841, 418953276, 429863175, 481267935, 492157836, 517942386, 539762184
Offset: 1
148726593 => {{1,4,8},{7,2,6},{5,9,3}}:
1 4 8
7 2 6
5 9 3
1*(2*3-9*6)-4(7*3-5*6)+8*(7*9-5*2)=412.
Cf.
A085000 Maximal determinant of an n X n matrix using the integers 1 to n^2.
Cf.
A088215 (1/36)*number of ways to express n as the determinant of a 3 X 3 matrix with elements 1..9.
A372708
a(n) is the smallest number k that is the concatenation of the elements of a 3 X 3 matrix whose determinant is n and whose elements are a permutation of the numbers 1 through 9; a(n) = -1 if no such number k exists.
Original entry on oeis.org
123456789, 123469857, 123467589, 123467895, 123458769, 123469578, 123589476, 123457689, 123748569, 123456798, 123469587, 123469875, 123458967, 123457986, 123469785, 123457698, 123548769, 123689574, 123546789, 123457896, 123569487, 123458697, 123547689, 123649758, 123567498
Offset: 0
a(0) = 123456789 because it is the smallest number that can be formed by concatenating the elements of a 3 X 3 matrix whose determinant is 0 and whose elements are a permutation of the numbers 1..9. The matrix is [1 2 3] [4 5 6] [7 8 9].
-
a[n_] := a[n] = Module[{mat}, mat = Select[Partition[#, 3] & /@ Permutations[Range[1, 9]], Det[#] == n &]; If[Length[mat] > 0, First[Sort[ToExpression[StringJoin[Riffle[ToString /@ Flatten[#], ""]]] & /@ mat]], 0]];
Monitor[(* Do not use Monitor[] if using Wolfram Cloud, otherwise memory issues may occur *)Table[a[n], {n, 0, 24}], {n, Table[a[m], {m, 0, n - 1}]}] (* Robert P. P. McKone, May 11 2024 *)
-
from sympy import Matrix
from itertools import permutations
adict = dict()
for p in permutations(range(1, 10)):
v = Matrix(3, 3, p).det()
if v not in adict:
adict[v] = int("".join(map(str, p)))
afull = [adict[v] if v in adict else -1 for v in range(max(adict)+1)]
print(afull) # Michael S. Branicky, May 11 2024
Showing 1-8 of 8 results.
Comments