A088794
Coefficient of x^n in A(x)^(2n) is A004123(n); self-convolution is A088222.
Original entry on oeis.org
1, 1, 1, 4, 30, 305, 3905, 59828, 1063728, 21497921, 486476766, 12184618776, 334684804952, 10005219881472, 323438539163521, 11244331792094312, 418375698771595037, 16590419690069321454, 698526596162530976512
Offset: 0
A090351
G.f. satisfies A^3 = BINOMIAL(A^2).
Original entry on oeis.org
1, 1, 3, 15, 108, 1032, 12388, 179572, 3052986, 59555338, 1310677726, 32114051862, 866766965308, 25547102523604, 816335926158372, 28107705687291892, 1037367351120788551, 40852168787823027351, 1709792654612819858341
Offset: 0
A^3 = BINOMIAL(A090352), since A090352=A^2.
-
m:=40;
f:= func< n,x | Exp((&+[(&+[2^(j-1)*Factorial(j)* StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;
R:=PowerSeriesRing(Rationals(), m+1); // A090351
Coefficients(R!( f(m,x) )); // G. C. Greubel, Jun 08 2023
-
nmax = 18; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^3 - A[x/(1 - x)]^2/(1 - x) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
With[{m=40}, CoefficientList[Series[Exp[Sum[Sum[2^(j-1)*j!* StirlingS2[k,j], {j,k}]*x^k/k, {k,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Jun 08 2023 *)
-
{a(n) = my(A); if(n<0,0,A = 1+x +x*O(x^n); for(k=1,n, B = subst(A^2,x,x/(1-x))/(1-x) +x*O(x^n); A = A - A^3 + B); polcoef(A,n,x))}
for(n=0,25,print1(a(n),", "))
-
m=50
def f(n, x): return exp(sum(sum(2^(j-1)*factorial(j)* stirling_number2(k,j)*x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
def A090351_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(m,x) ).list()
A090351_list(m-9) # G. C. Greubel, Jun 08 2023
Showing 1-2 of 2 results.
Comments