cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A088380 Numbers not exceeding the cube of their smallest prime factor.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143, 149, 151, 157, 161, 163, 167, 169
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 28 2003

Keywords

Comments

a(n) <= A020639(a(n))^3 = A088378(a(n)); complement of A088381;
a(n) < A088381(k) for n <= 28, a(n) > A088381(k) for n > 28.

Crossrefs

Positions of numbers less than 4 in A307908.

Programs

  • Haskell
    a088380 n = a088382_list !! (n-1)
    a088380_list = [x | x <- [1..], x <= a020639 x ^ 3]
    -- Reinhard Zumkeller, Feb 06 2015
  • Mathematica
    Select[Range[200],#<=FactorInteger[#][[1,1]]^3&] (* Harvey P. Dale, Apr 28 2022 *)

A088383 Numbers greater than the 4th power of their smallest prime factor.

Original entry on oeis.org

18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 87, 88, 90, 92, 93, 94, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 116, 117, 118, 120, 122, 123, 124, 126
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 28 2003

Keywords

Comments

a(n) > A020639(a(n))^4 = A088379(a(n)); complement of A088382.
a(n) > A088382(k) for n <= 67, a(n) < A088382(k) for n > 67.

Crossrefs

Positions of numbers greater than 4 in A307908.

Programs

  • Haskell
    a088383 n = a088383_list !! (n-1)
    a088383_list = [x | x <- [1..], x  a020639 x ^ 4]
    -- Reinhard Zumkeller, Feb 06 2015
  • Mathematica
    Select[Range[200],#>(FactorInteger[#][[1,1]])^4&] (* Harvey P. Dale, Aug 15 2015 *)

A380995 Integers k that are the product of 3 distinct primes, the smallest of which is larger than the 4th root of k: k = p*q*r, where p, q, r are primes and k^(1/4) < p < q < r.

Original entry on oeis.org

385, 455, 595, 1001, 1309, 1463, 1547, 1729, 1771, 2093, 2233, 2261, 2387, 2431, 2717, 3289, 3553, 4147, 4199, 4301, 4433, 4807, 5083, 5291, 5423, 5681, 5797, 5863, 6061, 6149, 6409, 6479, 6721, 6851, 6919, 7163, 7337, 7429, 7579, 7657, 7667, 7733, 7843, 8041, 8177, 8437, 8569, 8671, 8723, 8789, 8987, 9061
Offset: 1

Views

Author

Matthew Goers, Feb 12 2025

Keywords

Comments

This subsequence of the sphenics (A007304) is similar to A362910 or A138109 for semiprimes. Ishmukhametov and Sharifullina defined semiprimes n = p*q where each prime is greater than n^(1/4) as strongly semiprime. This sequence lists sphenic numbers that are a product of 3 distinct primes k = p*q*r where each prime is greater than k^(1/4).
Sequence is intersection of A007304 (sphenics) and A088382 (numbers not exceeding the 4th power of their smallest prime factor).
No terms have 2 or 3 as a prime factor, as all sphenic numbers are greater than 2^4 = 16 and all odd sphenic numbers are greater than 3^4 = 81.
A380438 is the 'less strong' sequence of sphenic numbers k = p*q*r, where k^(1/5) < p < q < r.

Examples

			595 = 5*7*17 and 595^(1/4) < 5, so 595 is in the sequence.
665 = 5*7*19 but 665^(1/4) > 5, so 665 is not in the sequence.
		

Crossrefs

Cf. A007304 (sphenics), A088382, A380438, A115957, A362910 (strong semiprimes), A251728, A138109.
Subsequence of A253567, A290965.

Programs

  • Mathematica
    q[k_] := Module[{f = FactorInteger[k]}, f[[;; , 2]] == {1, 1, 1} && f[[1, 1]]^4 > k]; Select[Range[10^4], q] (* Amiram Eldar, Feb 14 2025 *)
  • PARI
    is(n) = my(f = factor(n)); f[,2] == [1,1,1]~ && f[1,1]^4 > n \\ David A. Corneth, Apr 24 2025
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A380995(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1		
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(max(0,primepi(min(x//(p*q),p**3//q))-b) for a,p in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,q in enumerate(primerange(p+1,isqrt(x//p)+1),a+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 28 2025
    

A087719 Least number m such that the number of numbers k <= m with k > spf(k)^n exceeds the number of numbers with k <= spf(k)^n.

Original entry on oeis.org

15, 27, 57, 135, 345, 927, 2577, 7335, 21225, 62127, 183297, 543735, 1618905, 4832127, 14447217, 43243335, 129533385, 388206927, 1163834337, 3489930135, 10466644665, 31393642527, 94168344657, 282479868135
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 29 2003

Keywords

Comments

mspf(k)^n & 1<=k<=m} <= m/2;
m>=a(n): #{k: k>spf(k)^n & 1<=k<=m} > m/2.

Crossrefs

Formula

Numbers so far satisfy a(n) = 3^n + 3*2^n + 6. - Ralf Stephan, May 10 2004
Empirical G.f.: 3*x*(5-21*x+20*x^2)/(1-x)/(1-2*x)/(1-3*x). - Colin Barker, Feb 22 2012

Extensions

a(14)-a(24) from Giovanni Resta, May 23 2013
Showing 1-4 of 4 results.