cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088387 Prime corresponding to largest prime power factor of n, a(1)=1.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 2, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 2, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 2, 41, 7, 43, 11, 3, 23, 47, 2, 7, 5, 17, 13, 53, 3, 11, 2, 19, 29, 59, 5, 61, 31, 3, 2, 13, 11, 67, 17, 23, 7, 71, 3, 73, 37, 5, 19, 11, 13, 79, 2, 3, 41, 83, 7, 17
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 28 2003

Keywords

Comments

Most significant prime factor of n: If n = (p_1^e_1)(p_2^e_2)(p_3^e_3)... and max(p_1^e_1,p_2^e_2,...) = p_k^e_k then a(n) = p_k.

Examples

			a(6) = a(2*3) = 3 because 3^1 > 2^1;
a(36) = a((2^2)(3^2)) = 3 because 3^2 > 2^2;
a(12) = a((2^2)*3) = 2 because 2^2 > 3^1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Sort[ {#[[1]]^#[[2]], #[[1]]} & /@ FactorInteger@ n][[ -1, 2]]; Array[f, 85] (* Robert G. Wilson v, Nov 05 2007 *)
    a[n_] := MaximalBy[FactorInteger[n], Power @@ # &][[1, 1]];
    Array[a, 85] (* Jean-François Alcover, Jun 27 2019 *)
  • PARI
    A088387(n) = if(1==n,1,my(f=factor(n),p=0); isprimepower(vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2])),&p); (p)); \\ Antti Karttunen, Jul 22 2018
    
  • Python
    from sympy import factorint
    def A088387(n): return max(((p**e,p) for p, e in factorint(n).items()), default=(0,1))[1] # Chai Wah Wu, Apr 17 2023

Formula

A034699(n) = a(n)^A088388(n).
a(n*a(n)) = a(n). - Sam Alexander, Dec 15 2003

Extensions

More terms from Ray Chandler, Dec 20 2003
Edited by N. J. A. Sloane at the suggestion of Stefan Steinerberger, Nov 04 2007