A088544 Scale factor by which primitive Pythagorean triangle {x=A088509(n), y=A088510(n), z=A088511(n)} needs be enlarged in order to circumscribe the smallest integral square having a side on the hypotenuse.
37, 229, 409, 793, 1261, 2041, 1789, 4381, 5233, 4069, 8317, 6073, 14449, 7969, 12181, 9997, 11041, 23473, 14089, 24457, 17341, 36181, 20773, 53461, 29341, 44269, 28009, 38509, 76297, 35869, 44257, 74209, 42841, 105769, 50137, 65701, 53209
Offset: 1
Keywords
References
- J. D. E. Konhauser et al., Which Way Did The Bicycle Go?, Problem 21, "The Square on the Hypotenuse", pp. 7; 79-80, Dolciani Math. Exp. No. 18, MAA, 1996.
Links
- Frank M Jackson, Table of n, a(n) for n = 1..10000
- Eric W. Weisstein, MathWorld: Conway circle.
- Wikipedia, Conway circle theorem.
Programs
-
Mathematica
lst={}; k=25; Do[If[GCD[m, n]==1&&OddQ[m+n], AppendTo[lst, {2m*n(m^4-n^4), m^2(m+n)^2+n^2(m-n)^2}]], {m, 1, k}, {n, 1, m}]; lst=Sort@lst; Table[lst[[n]][[2]], {n, 1, 100}] (* Frank M Jackson, Nov 04 2023 *)
Formula
a(n) = x*y + z^2.
a(n) = s^2 + r^2, where s is the semiperimeter and r is the inradius of triangle (x, y, z).
Extensions
More terms from Max Alekseyev, May 30 2009
Comments