A088722 Number of divisors d>1 of n such that d+1 also divides n.
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0
Offset: 1
Examples
n=144: divisors(144) = {1,2,3,4,6,8,9,12,16,18,24,36,48,72,144}, there are a(144) = 3 divisors d>1 such that also d+1 divides 144: (2,3), (3,4) and (8,9).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[DivisorSum[n, 1 &, And[# > 1, Divisible[n, # + 1]] &], {n, 105}] (* Michael De Vlieger, Jul 12 2017 *)
-
PARI
A088722(n) = sumdiv(n,d,(d>1)&&!(n%(d+1))); \\ Antti Karttunen, Jul 12 2017
-
PARI
first(n) = my(v = vector(n),k); for(i=2,sqrtint(n),k=i*(i+1); for(j=1, n\k, v[j*k]++)); v \\ David A. Corneth, Jul 12 2017
Formula
a(2n+1) = 0. - Ray Chandler, May 29 2008
a(n) = Sum_{d|n, (d+1)|n, d>1} 1. - Wesley Ivan Hurt, Jan 16 2022
From Amiram Eldar, Dec 31 2023: (Start)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/2. (End)
Extensions
Extended by Ray Chandler, May 29 2008
Comments