cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088821 a(n) is the sum of smallest prime factors of numbers from 1 to n.

Original entry on oeis.org

0, 2, 5, 7, 12, 14, 21, 23, 26, 28, 39, 41, 54, 56, 59, 61, 78, 80, 99, 101, 104, 106, 129, 131, 136, 138, 141, 143, 172, 174, 205, 207, 210, 212, 217, 219, 256, 258, 261, 263, 304, 306, 349, 351, 354, 356, 403, 405, 412, 414, 417, 419, 472, 474, 479, 481, 484
Offset: 1

Views

Author

Labos Elemer, Oct 22 2003

Keywords

References

  • M. Kalecki, On certain sums extended over primes or prime factors, Prace Mat, Vol. 8 (1963), pp. 121-127.
  • J. Sandor, D. S. Mitrinovic, B. Crstici, Handbook of Number Theory I, Volume 1, Springer, 2005, Chapter IV, p. 121.

Crossrefs

Programs

  • GAP
    P:=List(List([2..60],n->Factors(n)),i->i[1]);;
    a:=Concatenation([0],List([1..Length(P)],i->Sum([1..i],k->P[k]))); # Muniru A Asiru, Nov 29 2018
  • Mathematica
    Prepend[Accumulate[Rest[Table[FactorInteger[i][[1,1]],{i,60}]]],0] (* Harvey P. Dale, Jan 09 2011 *)
  • PARI
    a(n) = sum(k=2, n, factor(k)[1,1]); \\ Michel Marcus, May 15 2017
    

Formula

a(n) ~ n^2/(2 log n) [Kalecki]. - Thomas Ordowski, Nov 29 2018
a(n) = Sum_{prime p} n(p)*p, where n(p) is the number of integers in [1,n] with smallest prime factor spf(.) = A020639(.) = p, decreasing from n(2) = floor(n/2) to n(p) = 1 for p >= sqrt(n), possibly earlier, and n(p) = 0 for p > n. One has n(p) ~ D(p)*n where D(p) = (Product_{primes q < p} 1-1/q)/p = A038110/A038111 is the density of numbers having p as smallest prime factor. - M. F. Hasler, Dec 05 2018