cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A088822 a(n) is the sum of largest prime factors of numbers from 1 to n.

Original entry on oeis.org

0, 2, 5, 7, 12, 15, 22, 24, 27, 32, 43, 46, 59, 66, 71, 73, 90, 93, 112, 117, 124, 135, 158, 161, 166, 179, 182, 189, 218, 223, 254, 256, 267, 284, 291, 294, 331, 350, 363, 368, 409, 416, 459, 470, 475, 498, 545, 548, 555, 560, 577, 590, 643, 646, 657, 664, 683
Offset: 1

Views

Author

Labos Elemer, Oct 22 2003

Keywords

Crossrefs

Programs

  • GAP
    P:=List(List([2..60],n->Reversed(Factors(n))),i->i[1]);;
     a:=Concatenation([0],List([1..Length(P)],i->Sum([1..i],k->P[k]))); # Muniru A Asiru, Nov 29 2018
  • Mathematica
    -1 + Accumulate@ Array[FactorInteger[#][[-1, 1]] &, 57] (* Michael De Vlieger, Jul 23 2017 *)
  • PARI
    gpf(n)=if(n<4, n, n=factor(n)[, 1]; n[#n])
    a(n)=sum(k=2, n, gpf(k)) \\ Charles R Greathouse IV, Feb 19 2014
    

Formula

a(n) = Pi^2/12 * n^2/log n + O(n^2/log^2 n). - Charles R Greathouse IV, Feb 19 2014
a(n) ~ zeta(2) * A088821(n), where zeta(2) = Pi^2/6. - Thomas Ordowski, Nov 29 2018

A046669 Partial sums of A020639.

Original entry on oeis.org

1, 3, 6, 8, 13, 15, 22, 24, 27, 29, 40, 42, 55, 57, 60, 62, 79, 81, 100, 102, 105, 107, 130, 132, 137, 139, 142, 144, 173, 175, 206, 208, 211, 213, 218, 220, 257, 259, 262, 264, 305, 307, 350, 352, 355, 357, 404, 406, 413, 415, 418, 420, 473
Offset: 1

Views

Author

Keywords

References

  • M. Kalecki, On certain sums extended over primes or prime factors (in Polish), Prace Mat., Vol. 8 (1963/64), pp. 121-129.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section IV.1, p. 121.

Crossrefs

Programs

  • Haskell
    a046669 n = a046669_list !! (n-1)
    A046669_list = scanl1 (+) a020639_list -- Reinhard Zumkeller, Jun 15 2013
  • Mathematica
    Accumulate[Array[FactorInteger[#][[1,1]]&,60]]  (* Harvey P. Dale, Apr 20 2011 *)

Formula

a(n) = A088821(n) + 1.
From Amiram Eldar, Mar 04 2021: (Start)
a(n) ~ ((1 + o(1))/2)* n^2/log(n) (Kalecki, 1963/64).
a(n) = (1/2) * n^2/log(n) + O(n^2/log(n)^2) (Brouwer, 1974). (End)

A088824 Numbers n such that the sum of smallest prime factors of numbers from 1 to n is divisible by n.

Original entry on oeis.org

1, 2, 7, 14, 78, 113, 153, 439, 462, 1215, 2294, 8363, 11102, 12302, 36382, 38370, 60398, 199953, 224090, 421399, 427131, 1947938, 2467022, 2571633, 62395623, 462027217, 2140648015, 6418011931, 43074345625, 52714450814, 71229445182, 90719472005, 105685014433
Offset: 1

Views

Author

Labos Elemer, Oct 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    smp[n_] := If[n==1, 0, FactorInteger[n][[1, 1]]]; s = Accumulate @ Array[ smp, 10^5]; Select[Range[10^5], Mod[s[[#]], #] == 0 &] (* Giovanni Resta, Apr 27 2017 *)

Formula

Solutions to Mod[A088821[x], x]=0.

Extensions

More terms from Ray Chandler, Oct 31 2003
a(27)-a(31) from Donovan Johnson, Jul 09 2010
a(32)-a(33) from Giovanni Resta, Apr 27 2017

A088825 Numbers n such that the sum of largest prime factors of numbers from 1 to n is divisible by n.

Original entry on oeis.org

1, 2, 8, 9, 32, 62, 558, 993, 995, 1947, 2150, 4343, 9944, 10977, 43054658, 202275890, 2291937393, 2459073795, 2836929091, 3737529738, 21382629569, 248208997602, 389691028017, 838566394212, 1019000924619
Offset: 1

Views

Author

Labos Elemer, Oct 22 2003

Keywords

Comments

a(21) > 15*10^9. - Donovan Johnson, Nov 01 2009
a(22) > 10^11. - Donovan Johnson, Jul 09 2010
a(26) > 5*10^12. - Giovanni Resta, Apr 25 2017

Crossrefs

Programs

  • Mathematica
    gp[n_] := If[n==1, 0, FactorInteger[n][[-1, 1]]]; Flatten@ Position[ Accumulate[ gp /@ Range[10^5]] / Range[10^5], Integer] (* _Giovanni Resta, Apr 25 2017 *)

Formula

Solutions to Mod[A088822[x], x]=0.

Extensions

More terms from Ray Chandler, Oct 31 2003
a(17)-a(20) from Donovan Johnson, Nov 01 2009
a(21) from Donovan Johnson, Jul 09 2010
a(22)-a(25) from Giovanni Resta, Apr 25 2017

A088823 a(n) is the GCD of the sum of largest prime factors of numbers from 1 to n and of the sum of smallest prime factors of numbers from 1 to n.

Original entry on oeis.org

0, 2, 5, 7, 12, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 10, 1, 1, 1, 2, 29, 1, 1, 2, 1, 7, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 5, 1, 14, 1, 1
Offset: 1

Views

Author

Labos Elemer, Oct 22 2003

Keywords

Crossrefs

Programs

  • Maple
    map(igcd@op, ListTools:-PartialSums([[0,0],seq([min,max](numtheory:-factorset(n)),n=2..N)])); # Robert Israel, Dec 16 2015
  • Mathematica
    GCD @@@ Transpose[{Accumulate[Prepend[First /@ #, 0]], Accumulate[Prepend[Last /@ #, 0]]}] &@ Map[First /@ FactorInteger@ # &, Range[2, 103]] (* Michael De Vlieger, Dec 15 2015 *)

Formula

a(n) = gcd(A088821(n), A088822(n)).

A355441 Numbers k such that the sum of the least prime factors of i=2..k is prime.

Original entry on oeis.org

2, 3, 4, 8, 12, 15, 16, 20, 24, 40, 43, 52, 55, 60, 63, 68, 72, 79, 87, 95, 96, 108, 111, 120, 123, 136, 140, 148, 151, 160, 184, 211, 215, 216, 227, 232, 235, 239, 252, 255, 256, 260, 264, 280, 283, 288, 299, 307, 323, 324, 327, 332, 360, 363, 371, 372, 375, 379
Offset: 1

Views

Author

Jean-Marc Rebert, Jul 02 2022

Keywords

Examples

			8 is a term since the least prime factors of 2..8 are 2, 3, 2, 5, 2, 7, 2 and their sum 23 is prime.
		

Crossrefs

Cf. A088821.

Programs

  • Mathematica
    Position[Accumulate[Join[{0}, Table[FactorInteger[k][[1, 1]], {k, 2, 400}]]], ?PrimeQ] // Flatten (* _Amiram Eldar, Jul 02 2022 *)
  • PARI
    isok(k) = isprime(sum(i=2, k, factor(i)[1,1])); \\ Michel Marcus, Jul 04 2022
  • Python
    from sympy import isprime, factorint
    from itertools import accumulate, count, islice
    def agen(): yield from (k for k, sk in enumerate(accumulate(min(factorint(i)) for i in count(2)), 2) if isprime(sk))
    print(list(islice(agen(), 75))) # Michael S. Branicky, Jul 02 2022
    

A360461 T(n,k) is the sum of all the k-th smallest divisors of all positive integers <= n. Irregular triangle read by rows (n>=1, k>=1).

Original entry on oeis.org

1, 2, 2, 3, 5, 4, 7, 4, 5, 12, 4, 6, 14, 7, 6, 7, 21, 7, 6, 8, 23, 11, 14, 9, 26, 20, 14, 10, 28, 25, 24, 11, 39, 25, 24, 12, 41, 28, 28, 6, 12, 13, 54, 28, 28, 6, 12, 14, 56, 35, 42, 6, 12, 15, 59, 40, 57, 6, 12, 16, 61, 44, 65, 22, 12, 17, 78, 44, 65, 22, 12, 18, 80, 47, 71, 31, 30, 19, 99, 47, 71, 31, 30
Offset: 1

Views

Author

Omar E. Pol, Feb 07 2023

Keywords

Comments

Also, looking at all the partitions into equal-sized parts of all positive integers <= n, T(n,k) is the total number of parts in the partitions with the k-th largest parts.
Column k lists the partial sums of the column k of A027750.
The rows where the length row increases to a record gives A002182.

Examples

			Triangle begins:
   1;
   2,   2;
   3,   5;
   4,   7,  4;
   5,  12,  4;
   6,  14,  7,   6;
   7,  21,  7,   6;
   8,  23, 11,  14;
   9,  26, 20,  14;
  10,  28, 25,  24;
  11,  39, 25,  24;
  12,  41, 28,  28,  6, 12;
  ...
For n = 6 the divisors, in increasing order, of all positive integers <= 6 are as follows:
  -----------------------------
  n\k |    1     2     3     4
  -----------------------------
  1   |    1
  2   |    1,    2
  3   |    1,    3
  4   |    1,    2,    4
  5   |    1,    5
  6   |    1,    2,    3,    6
.
The sum of the first divisors (k = 1) is equal to 1+1+1+1+1+1 = 6, so T(6,1) = 6.
The sum of the second divisors (k = 2) is equal to 2+3+2+5+2 = 14, so T(6,2) = 14.
The sum of the third divisors (k = 3) is equal to 4+3 = 7, so T(6,3) = 7.
The sum of the fourth divisors (k = 4) is equal to 6, so T(6,4) = 6.
So the 6th row of the triangle is [6, 14, 7, 6].
Also, for n = 6 the partitions into equal parts, with the sizes of the parts in decreasing order, of all positive integers <= 6 are as follows:
  ----------------------------------------------------
  n\k |     1      2              3           4
  ----------------------------------------------------
  1   |    [1]
  2   |    [2],  [1,1]
  3   |    [3],  [1,1,1]
  4   |    [4],  [2,2],       [1,1,1,1]
  5   |    [5],  [1,1,1,1,1]
  6   |    [6],  [3,3],       [2,2,2],   [1,1,1,1,1,1]
.
The total number of parts in the 1st partitions (k = 1) is 6, so T(6,1) = 6.
The total number of parts in the 2nd partitions (k = 2) is 14, so T(6,2) = 14.
The total number of parts in the 3rd partitions (k = 3) is 7, so T(6,3) = 7.
The total number of parts in the 4th partitions (k = 4) is 6, so T(6,4) = 6.
So the 6th row of the triangle is [6, 14, 7, 6].
		

Crossrefs

Row sums give A024916.
Row lengths give A070319.
Column 1 gives A000027.
Column 2 gives A088821.
The sum of the first n rows gives A175254.
Main sequences: A027750 and A244051.

Programs

Showing 1-7 of 7 results.