cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A088821 a(n) is the sum of smallest prime factors of numbers from 1 to n.

Original entry on oeis.org

0, 2, 5, 7, 12, 14, 21, 23, 26, 28, 39, 41, 54, 56, 59, 61, 78, 80, 99, 101, 104, 106, 129, 131, 136, 138, 141, 143, 172, 174, 205, 207, 210, 212, 217, 219, 256, 258, 261, 263, 304, 306, 349, 351, 354, 356, 403, 405, 412, 414, 417, 419, 472, 474, 479, 481, 484
Offset: 1

Views

Author

Labos Elemer, Oct 22 2003

Keywords

References

  • M. Kalecki, On certain sums extended over primes or prime factors, Prace Mat, Vol. 8 (1963), pp. 121-127.
  • J. Sandor, D. S. Mitrinovic, B. Crstici, Handbook of Number Theory I, Volume 1, Springer, 2005, Chapter IV, p. 121.

Crossrefs

Programs

  • GAP
    P:=List(List([2..60],n->Factors(n)),i->i[1]);;
    a:=Concatenation([0],List([1..Length(P)],i->Sum([1..i],k->P[k]))); # Muniru A Asiru, Nov 29 2018
  • Mathematica
    Prepend[Accumulate[Rest[Table[FactorInteger[i][[1,1]],{i,60}]]],0] (* Harvey P. Dale, Jan 09 2011 *)
  • PARI
    a(n) = sum(k=2, n, factor(k)[1,1]); \\ Michel Marcus, May 15 2017
    

Formula

a(n) ~ n^2/(2 log n) [Kalecki]. - Thomas Ordowski, Nov 29 2018
a(n) = Sum_{prime p} n(p)*p, where n(p) is the number of integers in [1,n] with smallest prime factor spf(.) = A020639(.) = p, decreasing from n(2) = floor(n/2) to n(p) = 1 for p >= sqrt(n), possibly earlier, and n(p) = 0 for p > n. One has n(p) ~ D(p)*n where D(p) = (Product_{primes q < p} 1-1/q)/p = A038110/A038111 is the density of numbers having p as smallest prime factor. - M. F. Hasler, Dec 05 2018

A088825 Numbers n such that the sum of largest prime factors of numbers from 1 to n is divisible by n.

Original entry on oeis.org

1, 2, 8, 9, 32, 62, 558, 993, 995, 1947, 2150, 4343, 9944, 10977, 43054658, 202275890, 2291937393, 2459073795, 2836929091, 3737529738, 21382629569, 248208997602, 389691028017, 838566394212, 1019000924619
Offset: 1

Views

Author

Labos Elemer, Oct 22 2003

Keywords

Comments

a(21) > 15*10^9. - Donovan Johnson, Nov 01 2009
a(22) > 10^11. - Donovan Johnson, Jul 09 2010
a(26) > 5*10^12. - Giovanni Resta, Apr 25 2017

Crossrefs

Programs

  • Mathematica
    gp[n_] := If[n==1, 0, FactorInteger[n][[-1, 1]]]; Flatten@ Position[ Accumulate[ gp /@ Range[10^5]] / Range[10^5], Integer] (* _Giovanni Resta, Apr 25 2017 *)

Formula

Solutions to Mod[A088822[x], x]=0.

Extensions

More terms from Ray Chandler, Oct 31 2003
a(17)-a(20) from Donovan Johnson, Nov 01 2009
a(21) from Donovan Johnson, Jul 09 2010
a(22)-a(25) from Giovanni Resta, Apr 25 2017

A088823 a(n) is the GCD of the sum of largest prime factors of numbers from 1 to n and of the sum of smallest prime factors of numbers from 1 to n.

Original entry on oeis.org

0, 2, 5, 7, 12, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 10, 1, 1, 1, 2, 29, 1, 1, 2, 1, 7, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 5, 1, 14, 1, 1
Offset: 1

Views

Author

Labos Elemer, Oct 22 2003

Keywords

Crossrefs

Programs

  • Maple
    map(igcd@op, ListTools:-PartialSums([[0,0],seq([min,max](numtheory:-factorset(n)),n=2..N)])); # Robert Israel, Dec 16 2015
  • Mathematica
    GCD @@@ Transpose[{Accumulate[Prepend[First /@ #, 0]], Accumulate[Prepend[Last /@ #, 0]]}] &@ Map[First /@ FactorInteger@ # &, Range[2, 103]] (* Michael De Vlieger, Dec 15 2015 *)

Formula

a(n) = gcd(A088821(n), A088822(n)).

A133133 a(n) is the largest prime factor of the sum of the largest prime factors of numbers from 2 to n.

Original entry on oeis.org

2, 5, 7, 3, 5, 11, 3, 3, 2, 43, 23, 59, 11, 71, 73, 5, 31, 7, 13, 31, 5, 79, 23, 83, 179, 13, 7, 109, 223, 127, 2, 89, 71, 97, 7, 331, 7, 11, 23, 409, 13, 17, 47, 19, 83, 109, 137, 37, 7, 577, 59, 643, 19, 73, 83, 683, 89, 257, 97, 31, 31, 7, 877, 89, 53, 11, 197, 7, 29, 181, 11
Offset: 2

Views

Author

Paul Finley (pfinley(AT)touro.edu), Sep 21 2007

Keywords

Examples

			a(11) = gpf(43) = 43;
a(12) = gpf(46) = 23.
		

Crossrefs

Programs

  • Maple
    gpf:= proc(n) max(numtheory:-factorset(n)) end proc:
    map(gpf, ListTools:-PartialSums(map(gpf, [$2..100])));
  • Mathematica
    FactorInteger[#][[-1,1]]&/@Accumulate[Table[FactorInteger[n][[-1,1]],{n,2,80}]] (* Harvey P. Dale, Feb 01 2025 *)
  • PARI
    gpf(n) = vecmax(factor(n)[,1]);
    a(n) = gpf(sum(k=2, n, gpf(k))); \\ Michel Marcus, Jun 02 2021

A303659 Numbers k such that the average of greatest prime factors of all positive integers <= k is an integer.

Original entry on oeis.org

2, 5, 6, 24, 27, 28, 79, 1171, 1901, 1932, 7845, 19152, 360698, 649358, 1731441, 1979944, 30658517, 34337898, 400114748, 412626117, 3738454462, 7725156081, 97366414806, 129951504625, 290788509485
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 28 2018

Keywords

Comments

Numbers k such that (k - 1) | (A046670(k) - 1).
Numbers k such that (k - 1) | A088822(k).
a(26) > 10^12. - Giovanni Resta, May 05 2018

Examples

			6 is in the sequence because (gpf(2) + gpf(3) + gpf(4) + gpf(5) + gpf(6))/5 = (2 + 3 + 2 + 5 + 3)/5 = 3 is an integer.
		

Crossrefs

Programs

  • PARI
    isok(n) = (n>1) && !(sum(k=2, n, vecmax(factor(k)[,1])) % (n-1)); \\ Michel Marcus, Apr 29 2018
    
  • PARI
    lista(nn) = {s = 0; for (n=2, nn, s += vecmax(factor(n)[,1]); if (! (s % (n-1)), print1(n, ", ")););} \\ Michel Marcus, Apr 29 2018

Extensions

a(13)-a(18) from Michel Marcus, Apr 29 2018
a(19)-a(25) from Giovanni Resta, May 05 2018
Showing 1-5 of 5 results.