cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A088821 a(n) is the sum of smallest prime factors of numbers from 1 to n.

Original entry on oeis.org

0, 2, 5, 7, 12, 14, 21, 23, 26, 28, 39, 41, 54, 56, 59, 61, 78, 80, 99, 101, 104, 106, 129, 131, 136, 138, 141, 143, 172, 174, 205, 207, 210, 212, 217, 219, 256, 258, 261, 263, 304, 306, 349, 351, 354, 356, 403, 405, 412, 414, 417, 419, 472, 474, 479, 481, 484
Offset: 1

Views

Author

Labos Elemer, Oct 22 2003

Keywords

References

  • M. Kalecki, On certain sums extended over primes or prime factors, Prace Mat, Vol. 8 (1963), pp. 121-127.
  • J. Sandor, D. S. Mitrinovic, B. Crstici, Handbook of Number Theory I, Volume 1, Springer, 2005, Chapter IV, p. 121.

Crossrefs

Programs

  • GAP
    P:=List(List([2..60],n->Factors(n)),i->i[1]);;
    a:=Concatenation([0],List([1..Length(P)],i->Sum([1..i],k->P[k]))); # Muniru A Asiru, Nov 29 2018
  • Mathematica
    Prepend[Accumulate[Rest[Table[FactorInteger[i][[1,1]],{i,60}]]],0] (* Harvey P. Dale, Jan 09 2011 *)
  • PARI
    a(n) = sum(k=2, n, factor(k)[1,1]); \\ Michel Marcus, May 15 2017
    

Formula

a(n) ~ n^2/(2 log n) [Kalecki]. - Thomas Ordowski, Nov 29 2018
a(n) = Sum_{prime p} n(p)*p, where n(p) is the number of integers in [1,n] with smallest prime factor spf(.) = A020639(.) = p, decreasing from n(2) = floor(n/2) to n(p) = 1 for p >= sqrt(n), possibly earlier, and n(p) = 0 for p > n. One has n(p) ~ D(p)*n where D(p) = (Product_{primes q < p} 1-1/q)/p = A038110/A038111 is the density of numbers having p as smallest prime factor. - M. F. Hasler, Dec 05 2018

A088822 a(n) is the sum of largest prime factors of numbers from 1 to n.

Original entry on oeis.org

0, 2, 5, 7, 12, 15, 22, 24, 27, 32, 43, 46, 59, 66, 71, 73, 90, 93, 112, 117, 124, 135, 158, 161, 166, 179, 182, 189, 218, 223, 254, 256, 267, 284, 291, 294, 331, 350, 363, 368, 409, 416, 459, 470, 475, 498, 545, 548, 555, 560, 577, 590, 643, 646, 657, 664, 683
Offset: 1

Views

Author

Labos Elemer, Oct 22 2003

Keywords

Crossrefs

Programs

  • GAP
    P:=List(List([2..60],n->Reversed(Factors(n))),i->i[1]);;
     a:=Concatenation([0],List([1..Length(P)],i->Sum([1..i],k->P[k]))); # Muniru A Asiru, Nov 29 2018
  • Mathematica
    -1 + Accumulate@ Array[FactorInteger[#][[-1, 1]] &, 57] (* Michael De Vlieger, Jul 23 2017 *)
  • PARI
    gpf(n)=if(n<4, n, n=factor(n)[, 1]; n[#n])
    a(n)=sum(k=2, n, gpf(k)) \\ Charles R Greathouse IV, Feb 19 2014
    

Formula

a(n) = Pi^2/12 * n^2/log n + O(n^2/log^2 n). - Charles R Greathouse IV, Feb 19 2014
a(n) ~ zeta(2) * A088821(n), where zeta(2) = Pi^2/6. - Thomas Ordowski, Nov 29 2018

A088824 Numbers n such that the sum of smallest prime factors of numbers from 1 to n is divisible by n.

Original entry on oeis.org

1, 2, 7, 14, 78, 113, 153, 439, 462, 1215, 2294, 8363, 11102, 12302, 36382, 38370, 60398, 199953, 224090, 421399, 427131, 1947938, 2467022, 2571633, 62395623, 462027217, 2140648015, 6418011931, 43074345625, 52714450814, 71229445182, 90719472005, 105685014433
Offset: 1

Views

Author

Labos Elemer, Oct 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    smp[n_] := If[n==1, 0, FactorInteger[n][[1, 1]]]; s = Accumulate @ Array[ smp, 10^5]; Select[Range[10^5], Mod[s[[#]], #] == 0 &] (* Giovanni Resta, Apr 27 2017 *)

Formula

Solutions to Mod[A088821[x], x]=0.

Extensions

More terms from Ray Chandler, Oct 31 2003
a(27)-a(31) from Donovan Johnson, Jul 09 2010
a(32)-a(33) from Giovanni Resta, Apr 27 2017

A088823 a(n) is the GCD of the sum of largest prime factors of numbers from 1 to n and of the sum of smallest prime factors of numbers from 1 to n.

Original entry on oeis.org

0, 2, 5, 7, 12, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 10, 1, 1, 1, 2, 29, 1, 1, 2, 1, 7, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 5, 1, 14, 1, 1
Offset: 1

Views

Author

Labos Elemer, Oct 22 2003

Keywords

Crossrefs

Programs

  • Maple
    map(igcd@op, ListTools:-PartialSums([[0,0],seq([min,max](numtheory:-factorset(n)),n=2..N)])); # Robert Israel, Dec 16 2015
  • Mathematica
    GCD @@@ Transpose[{Accumulate[Prepend[First /@ #, 0]], Accumulate[Prepend[Last /@ #, 0]]}] &@ Map[First /@ FactorInteger@ # &, Range[2, 103]] (* Michael De Vlieger, Dec 15 2015 *)

Formula

a(n) = gcd(A088821(n), A088822(n)).
Showing 1-4 of 4 results.