cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A088837 Numerator of sigma(2*n)/sigma(n). Denominator see in A038712.

Original entry on oeis.org

3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 63, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 127, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 63, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 255, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 63, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3
Offset: 1

Views

Author

Labos Elemer, Nov 04 2003

Keywords

Comments

In general sigma(2^k*n) / sigma(n) = ((2^k*n) XOR (2^k*n-1)) / (n XOR (n-1)), see link. Jon Maiga, Dec 10 2018

Crossrefs

Programs

  • Maple
    nmax:=93: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := 2^(p+2)-1 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 09 2013
  • Mathematica
    k=2; Table[Numerator[DivisorSigma[1, k*n]/DivisorSigma[1, n]], {n, 1, 128}]
    Table[BitXor[2*n, 2*n - 1], {n, 128}] (* Jon Maiga, Dec 10 2018 *)
  • PARI
    A088837(n) = numerator(sigma(n<<1)/sigma(n)); \\ Antti Karttunen, Nov 01 2018

Formula

a(n) = 4*2^A007814(n)-1 = 4*A006519(n)-1 = A059159(n)-1 = 2*A038712(n) + 1.
a((2*n-1)*2^p) = 2^(p+2)-1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 09 2013
a(n) = (2n) XOR (2n-1). - Jon Maiga, Dec 10 2018
From Amiram Eldar, Jan 06 2023: (Start)
a(n) = numerator(A062731(n)/A000203(n)).
Sum_{k=1..n} a(k) ~ (log_2(n) + (gamma-1)/log(2) + 1)*2*n, where gamma is Euler's constant (A001620).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A038712(k) = A065442 + 1 = 2.606695... . (End).

A088838 Numerator of the quotient sigma(3n)/sigma(n).

Original entry on oeis.org

4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 121, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 121, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 364, 4, 4, 13, 4, 4, 13, 4, 4, 40
Offset: 1

Views

Author

Labos Elemer, Nov 04 2003

Keywords

Crossrefs

Programs

  • Maple
    A088838 := proc(n)
        numtheory[sigma](3*n)/numtheory[sigma](n) ;
        numer(%) ;
    end proc:
    seq(A088838(n),n=1..100) ; # R. J. Mathar, Nov 19 2017
    seq((3^(2+padic:-ordp(n,3))-1)/2, n=1..100); # Robert Israel, Nov 19 2017
  • Mathematica
    k=3; Table[Numerator[DivisorSigma[1, k*n]/DivisorSigma[1, n]], {n, 1, 128}]
  • PARI
    a(n) = numerator(sigma(3*n)/sigma(n)) \\ Felix Fröhlich, Nov 19 2017

Formula

From Robert Israel, Nov 19 2017: (Start)
a(n) = (3^(2+A007949(n))-1)/2.
G.f.: Sum_{k>=0} (3^(k+2)-1)*(x^(3^k)+x^(2*3^k))/(2*(1-x^(3^(k+1)))). (End)
a(n) = sigma(3*n)/(sigma(3*n) - 3*sigma(n)), where sigma(n) = A000203(n). - Peter Bala, Jun 10 2022
From Amiram Eldar, Jan 06 2023: (Start)
a(n) = numerator(A144613(n)/A000203(n)).
Sum_{k=1..n} a(k) ~ (3/log(3))*n*log(n) + (1/2 + 3*(gamma-1)/log(3))*n, where gamma is Euler's constant (A001620).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A080278(k) = 4*A214369 + 1 = 3.728614... . (End)

A088839 Numerator of sigma(4n)/sigma(n).

Original entry on oeis.org

7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 127, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 85, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 127, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 511, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 127, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31
Offset: 1

Views

Author

Labos Elemer, Nov 04 2003

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local m;
      m:= padic:-ordp(n,2);
      if m::odd then (2^(m+3)-1)/3 else 2^(m+3)-1 fi
    end proc:
    map(f, [$1..200]); # Robert Israel, Nov 19 2017
  • Mathematica
    k=4; Table[Numerator[DivisorSigma[1, k*n]/DivisorSigma[1, n]], {n, 1, 128}]
  • PARI
    A088839(n) = numerator(sigma(4*n)/sigma(n)); \\ Antti Karttunen, Nov 18 2017

Formula

a(n) = (8*A006519(n)-1)/(1+2*A096268(n)). - Robert Israel, Nov 19 2017
From Amiram Eldar, Jan 06 2023: (Start)
a(n) = numerator(A193553(n)/A000203(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A088840(k) = 3*A065442 + 1 = 5.820085... . (End)

Extensions

Typo in definition corrected by Antti Karttunen, Nov 18 2017

A088842 Denominator of the quotient sigma(7n)/sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 57, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 57, 1, 1, 1, 1, 1, 1, 8
Offset: 1

Views

Author

Labos Elemer, Nov 04 2003

Keywords

Comments

Sum of powers of 7 dividing n. - Amiram Eldar, Nov 27 2022

Crossrefs

Cf. A000203 (sigma), A001620, A088841 (numerators), A283078 (sigma(7n)).

Programs

  • Mathematica
    Table[Denominator[DivisorSigma[1, 7*n]/DivisorSigma[1, n]], {n, 1, 128}] (* corrected by Ilya Gutkovskiy, Dec 15 2020 *)
    a[n_] := (7^(IntegerExponent[n, 7] + 1) - 1)/6; Array[a, 100] (* Amiram Eldar, Nov 27 2022 *)
  • PARI
    a(n) = denominator(sigma(7*n)/sigma(n)); \\ Michel Marcus, Dec 15 2020
    
  • PARI
    a(n) = (7^(valuation(n, 7) + 1) - 1)/6; \\ Amiram Eldar, Nov 27 2022

Formula

G.f.: Sum_{k>=0} 7^k * x^(7^k) / (1 - x^(7^k)). - Ilya Gutkovskiy, Dec 15 2020
From Amiram Eldar, Nov 27 2022: (Start)
Multiplicative with a(7^e) = (7^(e+1)-1)/6, and a(p^e) = 1 for p != 7.
Dirichlet g.f.: zeta(s) / (1 - 7^(1 - s)).
Sum_{k=1..n} a(k) ~ n*log_7(n) + (1/2 + (gamma - 1)/log(7))*n, where gamma is Euler's constant (A001620). (End)

A088841 Numerator of the quotient sigma(7*n)/sigma(n).

Original entry on oeis.org

8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 400, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8, 57, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Labos Elemer, Nov 04 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Numerator[DivisorSigma[1, 7*n]/DivisorSigma[1, n]], {n, 1, 128}]
  • PARI
    a(n) = numerator(sigma(7*n)/sigma(n)); \\ Amiram Eldar, Mar 22 2024

Formula

From Amiram Eldar, Mar 22 2024: (Start)
a(n) = numerator(A283078(n)/A000203(n)).
a(n) = (7^(A214411(n)+2)-1)/6 = (49*A268354(n)-1)/6.
Sum_{k=1..n} a(k) ~ (7/log(7))*n*log(n) + (9/2 + 7*(gamma-1)/log(7))*n, where gamma is Euler's constant (A001620).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A088842(k) = 1 + 36 * Sum_{k>=1} 1/(7^k-1) = 7.87276224676... . (End)
Showing 1-5 of 5 results.