A159907
Numbers m with half-integral abundancy index, sigma(m)/m = k+1/2 with integer k.
Original entry on oeis.org
2, 24, 4320, 4680, 26208, 8910720, 17428320, 20427264, 91963648, 197064960, 8583644160, 10200236032, 21857648640, 57575890944, 57629644800, 206166804480, 17116004505600, 1416963251404800, 15338300494970880, 75462255348480000, 88898072401645056, 301183421949935616, 6219051710415667200
Offset: 1
a(1) = 2 since sigma(2)/2 = (1+2)/2 = 3/2 is of the form k+1/2 with integer k=1.
a(2) = 24 is in the sequence since sigma(24)/24 = (1+2+3+4+6+8+12+24)/24 = (24+12+24)/24 = k+1/2 with integer k=2.
-
isok(n) = denominator(sigma(n,-1)) == 2; \\ Michel Marcus, Sep 19 2015
-
forfactored(n=1,10^7, if(denominator(sigma(n,-1))==2, print1(n[1]", "))) \\ Charles R Greathouse IV, May 09 2017
-
from fractions import Fraction
from sympy import divisor_sigma as sigma
def aupto(limit):
for k in range(1, limit):
if Fraction(int(sigma(k, 1)), k).denominator == 2:
print(k, end=", ")
aupto(3*10**4) # Michael S. Branicky, Feb 24 2021
A160678
Numbers n whose abundancy is equal to 13/2; sigma(n)/n = 13/2.
Original entry on oeis.org
170974031122008628879954060917200710847692800, 1893010442758976546037991125738431754692198400, 54361481238923605327597493185154939181072384000
Offset: 1
a(1) = 2^23 3^9 5^2 7^5 11^5 13^2 17 19^3 31 37 43 61^2 97 181 241.
As the "sum of divisors" function (sigma) is a multiplicative function, sigma(a(1)) is the product of the values of sigma at the above prime powers, respectively given as follows, in factorized form:
sigma(a(1)) = (3^2 5 7 13 17 241) (2^2 11^2 61) (31) (2^3 3 19 43) (2^2 3^2 7 19 37) (3 61) (2 3^2) (2^3 5 181) (2^5) (2 19) (2^2 11) (3 13 97) (2 7 13) (2 7^2) (2 11^2).
a(1) belongs to the sequence because the latter product boils down to 13/2 times the former.
Cf.
A000203 (sigma function, sum of divisors),
A141643 (abundancy = 5/2),
A055153 (abundancy = 7/2),
A141645 (abundancy = 9/2),
A159271 (abundancy = 11/2),
A159907 (half-integral abundancy, "hemiperfect numbers"),
A088912 (least numbers of given half-integer abundancy).
A007691 (multiperfect numbers, abundancy is an integer),
A000396 (perfect numbers, abundancy = 2),
A005101 (abundant numbers, abundancy is greater than 2),
A005100 (deficient numbers, abundancy is less than 2).
A317681
a(n) = smallest m such that sigma(m) = n*m/2.
Original entry on oeis.org
1, 2, 6, 24, 120, 4320, 30240, 8910720, 14182439040, 17116004505600, 154345556085770649600, 170974031122008628879954060917200710847692800, 141310897947438348259849402738485523264343544818565120000, 12749472205565550032020636281352368036406720997031277595140988449695952806020854579200000
Offset: 2
a(7) = 4320 since sigma(4320) = 15120 = 7/2*4320 and 4320 is the smallest m such that sigma(m)/m = 7/2.
-
Nest[Append[#, Block[{m = #1[[-1]] + 1}, While[DivisorSigma[1, m] != #2 m/2, m++]; m]] & @@ {#, Length@ # + 2} &, {1}, 6] (* Michael De Vlieger, Aug 05 2018 *)
-
for(n=2, 10, for(m=1, 10^12, if(sigma(m)/m==n/2, print1(m, ", "); break())))
-
a(n) = my(k=1); while (sigma(k) != k*n/2, k++); k; \\ Michel Marcus, May 15 2025
A216897
a(n) = smallest m such that sigma(m)/m = n + 1/3.
Original entry on oeis.org
3, 12, 1080, 18506880, 2198278051200, 28657168334177779210174055055360000, 30539655646420783598362725995379113771515252254037575464371359842304000000000
Offset: 1
a(1) = 3 because sigma(3)/3 = 4/3 = 1 + 1/3 and 3 is the earliest m such that sigma(m)/m = 1 + 1/3.
Showing 1-4 of 4 results.
Comments