A088994 Number of permutations in the symmetric group S_n such that the size of their centralizer is odd.
1, 1, 0, 2, 8, 24, 144, 720, 8448, 64512, 576000, 5529600, 74972160, 887546880, 11285084160, 168318259200, 2843121254400, 44790578380800, 747955947110400, 13937735643955200, 287117441217331200, 5838778006909747200, 120976472421826560000, 2712639152754878054400
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..450
Programs
-
Maple
b:= proc(n, i) option remember; `if`(((i+1)/2)^2
n, 0, (i-1)!* b(n-i, i-2)*binomial(n, i)))) end: a:= n-> b(n, n-1+irem(n, 2)): seq(a(n), n=0..30); # Alois P. Heinz, Nov 01 2017 -
Mathematica
nn=20;Range[0,nn]!CoefficientList[Series[Product[1+x^(2i-1)/(2i-1),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Mar 08 2013 *)
-
PARI
{a(n)=n!*polcoeff( prod(k=1, n, 1+(k%2)*x^k/k, 1+x*O(x^n)), n)} /* Michael Somos, Sep 19 2006 */
Formula
E.g.f.: Product_{m >= 1} (1+x^(2*m-1)/(2*m-1)). - Vladeta Jovovic, Nov 05 2003
a(n) ~ exp(-gamma/2) * n! / sqrt(2*n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 23 2019
a(n) = n! - A088335(n). - Alois P. Heinz, Jan 27 2020
Extensions
More terms from Vladeta Jovovic, Nov 03 2003
a(0)=1 prepended by Seiichi Manyama, Nov 01 2017
Comments