cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088994 Number of permutations in the symmetric group S_n such that the size of their centralizer is odd.

Original entry on oeis.org

1, 1, 0, 2, 8, 24, 144, 720, 8448, 64512, 576000, 5529600, 74972160, 887546880, 11285084160, 168318259200, 2843121254400, 44790578380800, 747955947110400, 13937735643955200, 287117441217331200, 5838778006909747200, 120976472421826560000, 2712639152754878054400
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 01 2003

Keywords

Comments

a(n) is the number of n-permutations composed only of odd cycles of distinct length. - Geoffrey Critzer, Mar 08 2013
Also the number of permutations p of [n] with unique (functional) square root, i.e., there exists a unique permutation g such that g^2 = p. - Keith J. Bauer, Jan 08 2024

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(((i+1)/2)^2n, 0, (i-1)!*
           b(n-i, i-2)*binomial(n, i))))
        end:
    a:= n-> b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 01 2017
  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[Product[1+x^(2i-1)/(2i-1),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Mar 08 2013 *)
  • PARI
    {a(n)=n!*polcoeff( prod(k=1, n, 1+(k%2)*x^k/k, 1+x*O(x^n)), n)} /* Michael Somos, Sep 19 2006 */

Formula

E.g.f.: Product_{m >= 1} (1+x^(2*m-1)/(2*m-1)). - Vladeta Jovovic, Nov 05 2003
a(n) ~ exp(-gamma/2) * n! / sqrt(2*n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 23 2019
a(n) = n! - A088335(n). - Alois P. Heinz, Jan 27 2020

Extensions

More terms from Vladeta Jovovic, Nov 03 2003
a(0)=1 prepended by Seiichi Manyama, Nov 01 2017