cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A217133 Numbers n such that 5^n + 8 is prime.

Original entry on oeis.org

1, 95, 335, 3155, 28651, 91135
Offset: 1

Views

Author

Vincenzo Librandi, Oct 01 2012

Keywords

Comments

Naturally these numbers are odd since (6-1)^(2n)+8 is divisible by 3. - Bruno Berselli, Oct 04 2012
a(7) > 10^5. - Robert Price, Feb 03 2014
a(7) > 5*10^5. - Tyler NeSmith, Apr 24 2022

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 15000, 2], PrimeQ[5^# + 8] &]
  • PARI
    for(n=1, 5*10^3, if(isprime(5^n+8), print1(n", ")))

Extensions

a(5)-a(6) from Robert Price, Feb 03 2014

A228029 Primes of the form 5^n + 6.

Original entry on oeis.org

7, 11, 31, 131, 631, 1220703131
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A089142 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), this sequence (k=5, h=6), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is  5^n+6];
  • Mathematica
    Select[Table[5^n + 6, {n, 0, 200}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A217134 Numbers n such that 5^n - 8 is prime.

Original entry on oeis.org

2, 4, 10, 14, 88, 112, 140, 764, 3040, 11096, 24934, 25616, 54584, 93400
Offset: 1

Views

Author

Vincenzo Librandi, Oct 01 2012

Keywords

Comments

a(15) > 10^5. - Robert Price, Feb 03 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 5000], PrimeQ[5^# - 8] &]
  • PARI
    for(n=2, 5*10^3, if(isprime(5^n-8), print1(n", ")))

Extensions

a(10)-a(14) from Robert Price, Feb 03 2014

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))

A378815 Numbers k such that 5^k + 64 is prime.

Original entry on oeis.org

2, 58, 170, 1402, 1774, 10802, 86342
Offset: 1

Views

Author

Robert Price, Dec 08 2024

Keywords

Examples

			2 is a term because 5^2 + 64 = 89 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] |IsPrime (5^k+64)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[5^#+64]&]

Extensions

a(6) from Michael S. Branicky, Dec 17 2024
a(7) from Michael S. Branicky, Dec 23 2024

A378832 Numbers k such that 5^k + 68 is prime.

Original entry on oeis.org

1, 3, 7, 133, 331, 453, 10365
Offset: 1

Views

Author

Robert Price, Dec 08 2024

Keywords

Comments

a(8) > 22000. - Matthew L. LaSelle, Feb 25 2025
a(8) > 100000. - Michael S. Branicky, Mar 28 2025

Examples

			3 is a term because 5^3 + 68 = 193 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] |IsPrime (5^k+68)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[5^#+68]&]

Extensions

a(7) from Michael S. Branicky, Dec 17 2024

A378866 Numbers k such that 5^k + 72 is prime.

Original entry on oeis.org

0, 2, 3, 118, 498, 1023, 4262, 6094, 6382, 26334, 56062
Offset: 1

Views

Author

Robert Price, Dec 09 2024

Keywords

Examples

			3 is a term because 5^3 + 72 = 197 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] |IsPrime (5^k+72)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[5^#+72]&]

Extensions

a(8)-a(11) from Michael S. Branicky, Dec 19 2024

A378867 Numbers k such that 5^k + 86 is prime.

Original entry on oeis.org

3, 27, 179, 507, 4671, 4923, 5871, 7571, 19551, 19955
Offset: 1

Views

Author

Robert Price, Dec 09 2024

Keywords

Comments

a(11) > 10^5. - Michael S. Branicky, Dec 22 2024

Examples

			3 is a term because 5^3 + 86 = 211 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] |IsPrime (5^k+86)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[5^#+86]&]

Extensions

a(5)-a(10) from Vincenzo Librandi, Dec 17 2024
Showing 1-8 of 8 results.