A014561 Numbers k giving rise to prime quadruples (30k+11, 30k+13, 30k+17, 30k+19).
0, 3, 6, 27, 49, 62, 69, 108, 115, 188, 314, 433, 521, 524, 535, 601, 630, 647, 700, 742, 843, 1057, 1161, 1459, 1711, 1844, 2099, 2240, 2316, 2407, 2575, 2656, 2701, 2757, 2960, 3261, 3304, 3370, 3661, 3884, 3976, 4073, 4515, 4805, 5242, 5523, 5561, 5705
Offset: 1
Examples
a(4) = 27 for 27*30 = 810 yields twin primes at 810+11 = A001359(32) = A000040(142) and 810+17 = A001359(33) = A000040(144) ending at 810+19 = A000040(145).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10972 (first 1000 terms from Zak Seidov)
- Eric Weisstein's World of Mathematics, Prime Quadruplet.
Crossrefs
Programs
-
Mathematica
a014561Q[n_Integer] := If[And[PrimeQ[30 n + 11], PrimeQ[30 n + 13], PrimeQ[30 n + 17], PrimeQ[30 n + 19]] == True, True, False]; a014561[n_Integer] := Flatten[Position[Thread[a014561Q[Range[n]]], True]]; a014561[1000] (* Michael De Vlieger, Jul 17 2014 *) Select[Range[0,6000],AllTrue[30#+{11,13,17,19},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 21 2016 *)
-
PARI
isok(n) = isprime(30*n+11) && isprime(30*n+13) && isprime(30*n+17) && isprime(30*n+19) \\ Michel Marcus, Jun 09 2013
Formula
a(n) = (A007811(n) - 1)/3. - Zak Seidov, Sep 21 2009
a(n) = A061668(n) - 1. - Hugo Pfoertner, Nov 03 2023
Extensions
More terms from Warut Roonguthai
Comments