cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A011545 a(n) is the integer whose decimal digits are the first n+1 decimal digits of Pi.

Original entry on oeis.org

3, 31, 314, 3141, 31415, 314159, 3141592, 31415926, 314159265, 3141592653, 31415926535, 314159265358, 3141592653589, 31415926535897, 314159265358979, 3141592653589793, 31415926535897932, 314159265358979323, 3141592653589793238, 31415926535897932384
Offset: 0

Views

Author

Keywords

Comments

Number of collisions occurring in a system consisting of an infinitely massive, rigid wall at the origin, a ball with mass m stationary at position x1 > 0, and a ball with mass (10^2n)m at position x2 > x1 and rolling toward the origin, assuming perfectly elastic collisions and no friction. - Richard Holmes, Jun 17 2021
Wolfgang Haken (1977) conjectured that no term of this sequence is a perfect square, and estimated the probability that this conjecture is false to be smaller than 10^-9. - Paolo Xausa, Jul 15 2023

References

  • Martin Gardner, Fractal Music, Hypercards and More: Mathematical Recreations from Scientific American Magazine, W. H. Freemand and Company, New York, NY, 1992, pp. 274-275.

Crossrefs

Programs

  • Mathematica
    s=RealDigits[Pi, 10, 30][[1]]; Table[FromDigits[Take[s, n]], {n, Length[s]}]
    (* Or: *)
    a[n_] := IntegerPart[Pi*10^n]; Table[a[n], {n, 0, 9}] (* Peter Luschny, Mar 15 2024 *)
  • PARI
    A011545(n)={localprec(n+3); Pi\10^-n} \\ M. F. Hasler, Mar 15 2024

Formula

a(n) = floor(Pi*10^n).

Extensions

Definition corrected by M. F. Hasler, Mar 15 2024

A089282 Number of distinct prime factors of floor(Pi*10^n), Pi=3.14...

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 2, 3, 5, 3, 4, 2, 3, 3, 3, 3, 5, 2, 6, 5, 4, 6, 7, 6, 3, 4, 8, 3, 4, 6, 4, 6, 7, 2, 4, 4, 6, 1, 5, 2, 4, 5, 3, 5, 4, 6, 5, 3, 7, 3, 5, 5, 3, 6, 7, 5, 4, 5, 4, 6, 5, 7, 3, 5, 4, 6, 5, 5, 3, 4, 7, 8, 6, 6, 6, 5, 5, 6, 8, 5, 5, 4, 7, 7, 5, 6, 4
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 30 2003

Keywords

Examples

			n=6: floor(Pi*10^6) = 3141592 = 2*2*2*392699: a(6)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[Floor[Pi 10^n]],{n,0,80}] (* Harvey P. Dale, Dec 19 2022 *)

Formula

a(n) = A001221(A011545(n)).

Extensions

More terms from Ray Chandler, Oct 31 2003
a(81)-a(86) from Tyler Busby, Mar 14 2025

A089287 Sum of all prime factors of floor(Pi*10^n), Pi=3.14....

Original entry on oeis.org

3, 31, 159, 355, 169, 314159, 392705, 10166, 7998, 9787003, 28954814, 157079632681, 68250087, 4349287, 67757089, 1002742628275, 1230791, 1307585156, 14846149, 1296188, 1024025943, 452477425, 1492388104, 381315143079141, 989849547461, 841346597336054869
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 30 2003

Keywords

Comments

a(n) = A001414(A011545(n)).

Examples

			n=6: floor(Pi*10^6)=3141592=2*2*2*392699: a(6)=2+2+2+392699=392705.
		

Crossrefs

Programs

  • Mathematica
    sapf[n_]:=Total[Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]]; sapf/@ Floor[Pi 10^Range[0,30]] (* Harvey P. Dale, Nov 18 2018 *)

Extensions

a(23)-a(25) from Tyler Busby, Mar 14 2025

A089284 Number of divisors of floor(Pi*10^n), Pi=3.14...

Original entry on oeis.org

2, 2, 4, 6, 8, 2, 8, 8, 48, 8, 16, 4, 8, 8, 8, 8, 72, 4, 64, 96, 16, 64, 128, 128, 8, 24, 256, 8, 32, 64, 16, 64, 192, 4, 24, 40, 96, 2, 32, 4, 16, 48, 8, 32, 16, 64, 48, 8, 320, 8, 32, 48, 8, 64, 192, 48, 16, 32, 16, 64, 96, 128, 8, 120, 16, 64, 32, 48, 8, 32, 192, 512, 64, 96, 144
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 30 2003

Keywords

Examples

			For n=4: floor(Pi*10^4)=31415 has divisors: 1,5,61,103,305,515,6283,31415; a(4)=8.
		

Crossrefs

Programs

Formula

a(n) = A000005(A011545(n)).

Extensions

More terms from Robert G. Wilson v and Ray Chandler, Oct 30 2003
Showing 1-4 of 4 results.