A089463 Triangle, read by rows, of coefficients for the third iteration of the hyperbinomial transform.
1, 3, 1, 15, 6, 1, 108, 45, 9, 1, 1029, 432, 90, 12, 1, 12288, 5145, 1080, 150, 15, 1, 177147, 73728, 15435, 2160, 225, 18, 1, 3000000, 1240029, 258048, 36015, 3780, 315, 21, 1, 58461513, 24000000, 4960116, 688128, 72030, 6048, 420, 24, 1, 1289945088
Offset: 0
Examples
Rows begin: {1}, {3,1}, {15,6,1}, {108,45,9,1}, {1029,432,90,12,1}, {12288,5145,1080,150,15,1}, {177147,73728,15435,2160,225,18,1}, {3000000,1240029,258048,36015,3780,315,21,1},..
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
Flatten[Table[3(n-k+3)^(n-k-1) Binomial[n,k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 26 2013 *)
-
PARI
for(n=0,10, for(k=0,n, print1(3*(n-k+3)^(n-k-1)*binomial(n,k), ", "))) \\ G. C. Greubel, Nov 17 2017
Formula
T(n, k) = 3*(n-k+3)^(n-k-1)*C(n, k).
E.g.f.: exp(x*y)*(-LambertW(-y)/y)^3.
Note: (-LambertW(-y)/y)^3 = Sum_{n>=0} 3*(n+3)^(n-1)*y^n/n!.
Comments