cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089499 a(0)=0; a(1)=1; a(2n) = 4*Sum_{k=0..n} a(2k-1); a(2n+1) = a(2n) + a(2n-1).

Original entry on oeis.org

0, 1, 4, 5, 24, 29, 140, 169, 816, 985, 4756, 5741, 27720, 33461, 161564, 195025, 941664, 1136689, 5488420, 6625109, 31988856, 38613965, 186444716, 225058681, 1086679440, 1311738121, 6333631924, 7645370045, 36915112104, 44560482149
Offset: 0

Views

Author

Charlie Marion, Nov 11 2003

Keywords

Comments

1, 4, 5, 24, 29, 140, ...= numerators in convergents to (sqrt(8) - 2) = continued fraction [0; 1, 4, 1, 4, 1, 4, ...]; where sqrt(8) - 2 = 0.828427124... = the inradius of a right triangle with hypotenuse 6, legs sqrt(32) and 2. Denominators of convergents to [0; 1, 4, 1, 4, 1, 4, ...] = A041011 starting (1, 5, 6, 29, 35, ...). - Gary W. Adamson, Dec 22 2007
This is a strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n,m)) for all natural numbers n and m. - Peter Bala, May 12 2014

Crossrefs

Cf. A041011.

Programs

Formula

For n > 0, a(n) = A001333(n) + A084068(n-1)*(-1)^n.
a(n)*a(n+1) = A046729(n).
a(2n+1) = A001653(n); a(2n) = A005319(n).
a(1) = 1, a(2n) = 4*a(2n-1) + a(2n-2); a(2n-1) = a(2n-2) + a(2n-3). Given the 2 X 2 matrix X = [1, 4; 1, 5], [a(2n-1), a(2n)] = top row of X^n. The sequence starting (1, 4, 5, 24, 29, ...) = numerators in continued fraction [0; 1, 4, 1, 4, 1, 4, ...] = (sqrt(8) - 2) = 0.828427124... E.g., X^3 = [29, 140; 35, 169], where 29/35, 140/169 are convergents to (sqrt(8)-2). - Gary W. Adamson, Dec 22 2007
From R. J. Mathar, Jul 08 2009: (Start)
a(n) = A000129(n)*A000034(n+1).
a(n) = 6*a(n-2) - a(n-4).
G.f.: -x*(-1-4*x+x^2)/((x^2-2*x-1)*(x^2+2*x-1)). (End)
From Peter Bala, May 12 2014: (Start)
a(2*n + 1) = A041011(2*n + 1); a(2*n) = 4*A041011(2*n).
For n odd, a(n) = (alpha^n - beta^n)/(alpha - beta), and for n even, a(n) = 4*(alpha^n - beta^n)/(alpha^2 - beta^2), where alpha = 1 + sqrt(2) and beta = 1 - sqrt(2).
a(n) = Product_{j = 1..floor(n/2)} ( 4 + 4*cos^2(j*Pi/n) ) for n >= 1. (End)

Extensions

Corrected by T. D. Noe, Nov 08 2006
Definition corrected by Jonathan Sondow, Jun 06 2014