cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046729 Expansion of 4*x/((1+x)*(1-6*x+x^2)).

Original entry on oeis.org

0, 4, 20, 120, 696, 4060, 23660, 137904, 803760, 4684660, 27304196, 159140520, 927538920, 5406093004, 31509019100, 183648021600, 1070379110496, 6238626641380, 36361380737780, 211929657785304, 1235216565974040, 7199369738058940, 41961001862379596, 244566641436218640
Offset: 0

Views

Author

Keywords

Comments

Related to Pythagorean triples: alternate terms of A001652 and A046090.
Even-valued legs of nearly isosceles right triangles: legs differ by 1. 0 is smaller leg of degenerate triangle with legs 0 and 1 and hypotenuse 1. - Charlie Marion, Nov 11 2003
The complete (nearly isosceles) primitive Pythagorean triple is given by {a(n), a(n)+(-1)^n, A001653(n)}. - Lekraj Beedassy, Feb 19 2004
Note also that A046092 is the even leg of this other class of nearly isosceles Pythagorean triangles {A005408(n), A046092(n), A001844(n)}, i.e., {2n+1, 2n(n+1), 2n(n+1)+1} where longer sides (viz. even leg and hypotenuse) are consecutive. - Lekraj Beedassy, Apr 22 2004
Union of even terms of A001652 and A046090. Sum of legs of primitive Pythagorean triangles is A002315(n) = 2*a(n) + (-1)^n. - Lekraj Beedassy, Apr 30 2004

Examples

			[1,0,1]*[1,2,2; 2,1,2; 2,2,3]^0 gives (degenerate) primitive Pythagorean triple [1, 0, 1], so a(0) = 0. [1,0,1]*[1,2,2; 2,1,2; 2,2,3]^7 gives primitive Pythagorean triple [137903, 137904, 195025] so a(7) = 137904.
G.f. = 4*x + 20*x^2 + 120*x^3 + 696*x^4 + 4060*x^5 + 23660*x^6 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • W. SierpiƄski, Pythagorean triangles, Dover Publications, Inc., Mineola, NY, 2003, p. 17. MR2002669.

Crossrefs

Programs

  • Magma
    [4*Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)-2*(-1)^n) / 16): n in [0..30]]; // Vincenzo Librandi, Jul 29 2019
    
  • Mathematica
    LinearRecurrence[{5,5,-1}, {0,4,20}, 25] (* Vincenzo Librandi, Jul 29 2019 *)
  • PARI
    a(n)=n%2+(real((1+quadgen(8))^(2*n+1))-1)/2
    
  • PARI
    a(n)=if(n<0,-a(-1-n),polcoeff(4*x/(1+x)/(1-6*x+x^2)+x*O(x^n),n))
    
  • SageMath
    [(lucas_number2(2*n+1,2,-1) -2*(-1)^n)/4 for n in range(41)] # G. C. Greubel, Feb 11 2023

Formula

a(n) = ((1+sqrt(2))^(2n+1) + (1-sqrt(2))^(2n+1) + 2*(-1)^(n+1))/4.
a(n) = A089499(n)*A089499(n+1).
a(n) = 4*A084158(n). - Lekraj Beedassy, Jul 16 2004
a(n) = ceiling((sqrt(2)+1)^(2*n+1) - (sqrt(2)-1)^(2*n+1) - 2*(-1)^n)/4. - Lambert Klasen (Lambert.Klasen(AT)gmx.net), Nov 12 2004
a(n) is the k-th entry among the complete near-isosceles primitive Pythagorean triple A114336(n), where k = (3*(2n-1) - (-1)^n)/2, i.e., a(n) = A114336(A047235(n)), for positive n. - Lekraj Beedassy, Jun 04 2006
a(n) = A046727(n) - (-1)^n = 2*A114620(n). - Lekraj Beedassy, Aug 14 2006
From George F. Johnson, Aug 29 2012: (Start)
2*a(n)*(a(n) + (-1)^n) + 1 = (A000129(2*n+1))^2;
n > 0, 2*a(n)*(a(n) + (-1)^n) + 1 = ((a(n+1) - a(n-1))/4)^2, a perfect square.
a(n+1) = (3*a(n) + 2*(-1)^n) + 2*sqrt(2*a(n)*(a(n) + (-1)^n)+ 1).
a(n-1) = (3*a(n) + 2*(-1)^n) - 2*sqrt(2*a(n)*(a(n) + (-1)^n)+ 1).
a(n+1) = 6*a(n) - a(n-1) + 4*(-1)^n.
a(n+1) = 5*a(n) + 5*a(n-1) - a(n-2).
a(n+1) *a(n-1) = a(n)*(a(n) + 4*(-1)^n).
a(n) = (sqrt(1 + 8*A029549(n)) - (-1)^n)/2.
a(n) = A002315(n) - A084159(n) = A084159(n) - (-1)^n.
a(n) = A001652(n) + (1 - (-1)^n)/2 = A046090(n) - (1 + (-1)^n)/2.
Limit_{n->oo} a(n)/a(n-1) = 3 + 2*sqrt(2).
Limit_{n->oo} a(n)/a(n-2) = 17 + 12*sqrt(2).
Limit_{n->oo} a(n)/a(n-r) = (3 + 2*sqrt(2))^r.
Limit_{n->oo} a(n-r)/a(n) = (3 - 2*sqrt(2))^r. (End)
From G. C. Greubel, Feb 11 2023: (Start)
a(n) = (A001333(2*n+1) - 2*(-1)^n)/4.
a(n) = (1/2)*(A001109(n+1) + A001109(n) - (-1)^n). (End)
E.g.f.: exp(-x)*(exp(4*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)) - 1)/2. - Stefano Spezia, Aug 03 2024

A041011 Denominators of continued fraction convergents to sqrt(8).

Original entry on oeis.org

1, 1, 5, 6, 29, 35, 169, 204, 985, 1189, 5741, 6930, 33461, 40391, 195025, 235416, 1136689, 1372105, 6625109, 7997214, 38613965, 46611179, 225058681, 271669860, 1311738121, 1583407981, 7645370045, 9228778026, 44560482149
Offset: 0

Views

Author

Keywords

Comments

Sqrt(8) = 2 + continued fraction [0; 1, 4, 1, 4, 1, 4, ...] = 4/2 + 4/5 + 4/(5*29) + 4/(29*169) + 4/(169*985) + ... - Gary W. Adamson, Dec 21 2007
This is the sequence of Lehmer numbers U_n(sqrt(R),Q) with the parameters R = 4 and Q = -1. It is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all natural numbers n and m. - Peter Bala, May 12 2014
Apparently the same as A152118(n). - Georg Fischer, Jul 01 2019

Crossrefs

Programs

  • Magma
    I:=[1, 1, 5, 6]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013
    
  • Maple
    with(combinat): a := n -> fibonacci(n + 1, 2)/2^(n mod 2):
    seq(a(n), n = 0 .. 28); # Miles Wilson, Aug 04 2024
  • Mathematica
    Denominator[NestList[(4/(4 + #))&, 0, 60]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
    CoefficientList[Series[(x + x^2 - x^3)/(1 - 6 x^2 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2013 *)
    a0[n_] := ((3-2*Sqrt[2])^n*(2+Sqrt[2])-(-2+Sqrt[2])*(3+2*Sqrt[2])^n)/4 // Simplify
    a1[n_] := (-(3-2*Sqrt[2])^n+(3+2*Sqrt[2])^n)/(4*Sqrt[2]) // Simplify
    Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)
    LinearRecurrence[{0,6,0,-1},{1,1,5,6},40] (* Harvey P. Dale, Oct 21 2024 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,6,0]^n*[1;1;5;6])[1,1] \\ Charles R Greathouse IV, Nov 13 2015
    
  • PARI
    my(x='x+O('x^99)); concat(0, Vec((1+x-x^2)/(1-6*x^2+x^4))) \\ Altug Alkan, Mar 27 2016

Formula

a(2n) = A000129(2n+1), a(2n+1) = A000129(2n+2)/2.
a(n) = 6*a(n-2) - a(n-4). Also:
a(2n) = a(2n-1)+a(2n-2), a(2n+1)=4*a(2n)+a(2n-1).
G.f.: (1+x-x^2)/(1-6*x^2+x^4).
From Peter Bala, May 12 2014: (Start)
For n even, a(n) = (alpha^n - beta^n)/(alpha - beta), and for n odd, a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2), where alpha = 1 + sqrt(2) and beta = 1 - sqrt(2).
a(n) = Product_{k = 1..floor((n-1)/2)} ( 4 + 4*cos^2(k*Pi/n) ) for n >= 1. (End)
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = ((3-2*sqrt(2))^n*(2+sqrt(2))-(-2+sqrt(2))*(3+2*sqrt(2))^n)/4.
a1(n) = (-(3-2*sqrt(2))^n+(3+2*sqrt(2))^n)/(4*sqrt(2)). (End)
a(n) = ((-(-1 - sqrt(2))^n - 3*(1-sqrt(2))^n + (-1+sqrt(2))^n + 3*(1+sqrt(2))^n))/(8*sqrt(2)). - Colin Barker, Mar 27 2016

Extensions

Entry improved by Michael Somos
First term 0 in b-file, formulas and programs removed by Georg Fischer, Jul 01 2019
Showing 1-2 of 2 results.