A089677 Exponential convolution of A000670(n), with A000670(0)=0, with the sequence of all ones alternating in sign.
0, 1, 1, 7, 37, 271, 2341, 23647, 272917, 3543631, 51123781, 811316287, 14045783797, 263429174191, 5320671485221, 115141595488927, 2657827340990677, 65185383514567951, 1692767331628422661, 46400793659664205567, 1338843898122192101557
Offset: 0
Examples
From _Gus Wiseman_, Jan 06 2021: (Start) a(n) is the number of ordered set partitions of {1..n} into an odd number of blocks. The a(1) = 1 through a(3) = 7 ordered set partitions are: {{1}} {{1,2}} {{1,2,3}} {{1},{2},{3}} {{1},{3},{2}} {{2},{1},{3}} {{2},{3},{1}} {{3},{1},{2}} {{3},{2},{1}} (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J.-C. Aval, V. Féray, J.-C. Novelli, J.-Y. Thibon, Quasi-symmetric functions as polynomial functions on Young diagrams, arXiv preprint arXiv:1312.2727, 2013
- Gottfried Helms, Discussion of a problem concerning summing of like powers
Crossrefs
Ordered set partitions are counted by A000670.
The case of (unordered) set partitions is A024429.
The complement (even-length ordered set partitions) is counted by A052841.
A101707 counts partitions of odd positive rank.
A340102 counts odd-length factorizations into odd factors.
A340692 counts partitions of odd rank.
Other cases of odd length:
- A027193 counts partitions of odd length.
- A067659 counts strict partitions of odd length.
- A166444 counts compositions of odd length.
- A174726 counts ordered factorizations of odd length.
- A332304 counts strict compositions of odd length.
- A339890 counts factorizations of odd length.
Programs
-
Maple
h := n -> add(combinat:-eulerian1(n,k)*2^k,k=0..n): a := n -> (h(n)-(-1)^n)/2: seq(a(n),n=0..20); # Peter Luschny, Jul 09 2015
-
Mathematica
Table[Sum[Binomial[n, k](-1)^(n-k)Sum[i! StirlingS2[k, i], {i, 1, k}], {k, 0, n}], {n, 0, 20}]
-
PARI
a(n)=if(n<0,0,n!*polcoeff(subst(y/(1-y^2),y,exp(x+x*O(x^n))-1),n))
-
PARI
{a(n)=polcoeff(sum(m=0,n,(2*m+1)!*x^(2*m+1)/prod(k=1,2*m+1,1-k*x+x*O(x^n))),n)} /* Paul D. Hanna, Jul 20 2011 */
-
Sage
def A089677_list(len): # with a(0)=1 e, r = [1], [1] for i in (1..len-1): for k in range(i-1, -1, -1): e[k] = (e[k]*i)//(i-k) r.append(-sum(e[j]*(-1)^(i-j) for j in (0..i-1))) e.append(sum(e)) return r A089677_list(21) # Peter Luschny, Jul 09 2015
Formula
E.g.f.: (exp(x)-1)/(exp(x)*(2-exp(x))).
O.g.f.: Sum_{n>=0} (2*n+1)! * x^(2*n+1) / Product_{k=1..2*n+1} (1-k*x). - Paul D. Hanna, Jul 20 2011
a(n)=Sum(Binomial(n, k)(-1)^(n-k)Sum(i! Stirling2(k, i), i=1, ..k), k=0, .., n).
a(n) = (A000670(n)-(-1)^n)/2. - Vladeta Jovovic, Jan 17 2005
a(n) ~ n! / (4*(log(2))^(n+1)). - Vaclav Kotesovec, Feb 25 2014
a(n) = Sum_{k=0..floor(n/2)} (2*k+1)!*Stirling2(n, 2*k+1). - Peter Luschny, Sep 20 2015
Comments