A089946 Secondary diagonal of array A089944, in which the n-th row is the n-th binomial transform of the natural numbers.
1, 4, 24, 200, 2160, 28812, 458752, 8503056, 180000000, 4287177620, 113515167744, 3308603804376, 105288694411264, 3632897460937500, 135107988821114880, 5388090449900829728, 229385780960233586688, 10383890888434362036516, 498073600000000000000000
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..386
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- F. A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424.
- F. A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. (Annotated scanned copy)
- F. A. Haight, Letter to N. J. A. Sloane, n.d.
Programs
-
Magma
[2*(n+1) * (n+2)^(n-1): n in [0..50]]; // G. C. Greubel, Nov 14 2017
-
Mathematica
t=Sum[n^(n-1)x^n/n!, {n,1,20}]; Drop[Range[0,20]!*CoefficientList[ Series[t*Exp[t], {x,0,20}], x], 1] (* Geoffrey Critzer, Oct 07 2011 *) Table[2*(n+1)*(n+2)^(n-1), {n, 0, 50}] (* G. C. Greubel, Nov 14 2017 *)
-
PARI
a(n)=if(n<0,0,2*(n+1)*(n+2)^(n-1));
Formula
a(n) = 2*(n+1) * (n+2)^(n-1).
a(n) = Sum_{k=0..n} C(n, k) * (n-k+1)^(n-k-1) * (2*k+1) * (k+1)^(k-1).
E.g.f.: (-LambertW(x)/x)^2 * (1 - LambertW(x)) / (1 + LambertW(x)).
Comments