cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A038374 Length of longest contiguous block of 1's in binary expansion of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 2, 3, 3, 4, 5, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 6, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2
Offset: 1

Views

Author

Keywords

Examples

			a(157) = 3 because 157 in base 2 is 10011101 and longest contiguous block of 1's is of length 3.
May be arranged into blocks of lengths 1, 2, 4, 8, 16, ...:
1,
1, 2,
1, 1, 2, 3,
1, 1, 1, 2, 2, 2, 3, 4,
1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 2, 3, 3, 4, 5,
1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 6,
... - _N. J. A. Sloane_, Jul 25 2014
		

Crossrefs

Programs

  • Haskell
    import Data.List (unfoldr, group)
    a038374 = maximum . map length . filter ((== 1) . head) . group .
       unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2)
    -- Reinhard Zumkeller, May 01 2012
    
  • Maple
    A038374 := proc(n) local nshft,thisr,resul; nshft := n ; resul :=0 ; thisr :=0 ; while nshft > 0 do if nshft mod 2 <> 0 then thisr := thisr+1 ; else resul := max(resul,thisr) ; thisr := 0 ; fi ; nshft := floor(nshft/2) ; od ; resul := max(resul,thisr) ; RETURN(resul) ; end : for n from 1 to 80 do printf("%d,",A038374(n)) ; od : # R. J. Mathar, Jun 15 2006
  • Mathematica
    Table[Max[Length/@DeleteCases[Split[IntegerDigits[n,2]],?(MemberQ[ #,0] &)]],{n,120}] (* _Harvey P. Dale, Jun 10 2013 *)
  • PARI
    a(n)=if (n==0, return (0)); n>>=valuation(n, 2); if(n<2, return(n)); my(e=valuation(n+1, 2)); max(e, a(n>>e)) \\ Charles R Greathouse IV, Jan 12 2014; edited by Michel Marcus, Apr 14 2019
    
  • Python
    from itertools import groupby
    def a(n): return max(len(list(g)) for k, g in groupby(bin(n)[1:]) if k=='1')
    print([a(n) for n in range(1, 91)]) # Michael S. Branicky, Jul 04 2022

Formula

a(n) >= A089309(n). a(n) >= A089310(n). a(2^i)=1. a(2^i-1)=i. - R. J. Mathar, Jun 15 2006
May be defined by the recurrence given in A245196, taking G(n)=n+1 (n>=0) and m=1. - N. J. A. Sloane, Jul 25 2014

A089998 Smallest square with Hamming weight n (i.e., with exactly n 1's when written in binary).

Original entry on oeis.org

0, 1, 9, 25, 169, 121, 441, 1521, 2025, 5625, 24025, 47089, 109561, 32761, 393129, 851929, 1540081, 6275025, 15327225, 27258841, 41925625, 127893481, 243204025, 385611769, 998244025, 1979449081, 4823441401, 12870221809, 34324602361
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2003

Keywords

Comments

A000120(a(n)) = n.

Crossrefs

Programs

  • Mathematica
    a = Table[0, {30}]; Do[c = Count[IntegerDigits[n^2, 2], 1]; If[ a[[c + 1]] == 0, a[[c + 1]] = n^2; Print[c, " = ", n^2]], {n, 1, 360000}] (* Robert G. Wilson v, Dec 03 2003 *)
    Join[{0},With[{s=DigitCount[Range[400000]^2,2,1]},Flatten[Table[ Position[ s,?(#==n&),1,1],{n,30}]]]^2] (* _Harvey P. Dale, Mar 03 2013 *)

Formula

a(n) = A231897(n)^2. - Hugo Pfoertner, Dec 27 2022

Extensions

More terms from Robert G. Wilson v, Dec 03 2003
Offset corrected by Donovan Johnson, May 01 2012

A090002 Length of longest contiguous block of 1's in binary expansion of n-th triangular number.

Original entry on oeis.org

0, 1, 2, 2, 1, 4, 1, 3, 1, 2, 3, 1, 3, 2, 2, 4, 1, 2, 2, 5, 2, 3, 6, 1, 2, 1, 5, 4, 2, 2, 3, 5, 1, 2, 2, 3, 2, 6, 3, 2, 2, 3, 3, 3, 4, 2, 3, 2, 2, 2, 5, 3, 2, 3, 3, 2, 4, 3, 4, 3, 3, 3, 4, 6, 1, 2, 2, 3, 1, 4, 2, 7, 1, 2, 3, 2, 3, 3, 2, 2, 2, 5, 2, 4, 5, 3, 3, 4, 4, 5, 12, 2, 2, 2, 3, 3, 2, 1, 4, 2, 3, 5
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2003

Keywords

Comments

a(n) = A038374(A000217(n)).

Crossrefs

Programs

  • Mathematica
    Join[{0},Max[Length/@Select[Split[IntegerDigits[#,2]],#[[1]]==1&]]&/@ Accumulate[ Range[110]]] (* Harvey P. Dale, Jul 28 2022 *)

A090000 Length of longest contiguous block of 1's in binary expansion of n-th prime.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 2, 3, 3, 5, 1, 1, 2, 4, 2, 3, 4, 2, 3, 1, 4, 2, 2, 2, 2, 3, 2, 2, 3, 7, 2, 1, 2, 1, 3, 3, 2, 3, 2, 2, 2, 6, 2, 2, 3, 2, 5, 3, 3, 3, 4, 4, 5, 1, 3, 2, 4, 1, 2, 2, 1, 2, 3, 3, 4, 2, 1, 2, 3, 2, 3, 4, 3, 4, 7, 2, 2, 2, 2, 2, 2, 4, 2, 3, 3, 3, 3, 3, 4, 3, 5, 4, 4, 5, 5, 7, 1, 2, 3, 2, 2, 2, 3, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 20 2003

Keywords

Comments

a(n) = A038374(A000040(n)).

Crossrefs

Programs

  • Mathematica
    f[n_] := Length[ Union[ DeleteCases[ Split[ IntegerDigits[n, 2]], 0, 2]][[ -1]]]; Table[ f[ Prime[n]], {n, 1, 105}] (* Robert G. Wilson v, Dec 04 2003 *)

A090003 Length of longest contiguous block of 1's in binary expansion of n^3.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 2, 3, 1, 2, 5, 2, 2, 1, 3, 4, 1, 2, 2, 2, 5, 2, 2, 5, 2, 4, 1, 3, 3, 5, 4, 5, 1, 2, 2, 4, 2, 3, 2, 4, 5, 3, 2, 2, 2, 6, 5, 4, 2, 3, 4, 2, 1, 2, 3, 4, 3, 2, 5, 2, 4, 3, 5, 6, 1, 2, 2, 2, 2, 4, 4, 3, 2, 5, 3, 8, 2, 4, 4, 4, 5, 6, 3, 3, 2, 4, 2, 3, 2, 3, 6, 8, 5, 2, 4, 5, 2, 4, 3, 3, 4, 5
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2003

Keywords

Comments

a(n) = A038374(A000578(n)).

Crossrefs

Programs

A090047 Length of longest contiguous block of 0's in binary expansion of n^2.

Original entry on oeis.org

1, 0, 2, 2, 4, 2, 2, 3, 6, 3, 2, 2, 4, 2, 3, 4, 8, 4, 3, 2, 4, 2, 2, 4, 6, 3, 2, 2, 4, 2, 4, 5, 10, 5, 4, 2, 4, 2, 2, 3, 6, 3, 2, 2, 4, 2, 4, 4, 8, 4, 3, 3, 4, 2, 2, 3, 6, 3, 2, 2, 4, 3, 5, 6, 12, 6, 5, 3, 4, 2, 2, 3, 6, 3, 2, 2, 4, 2, 3, 4, 8, 4, 3, 2, 4, 4, 2, 3, 6, 3, 2, 6, 4, 4, 4, 5, 10, 5, 4, 2, 4, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n <= 1, 1-n, Max[Length /@ Split[IntegerDigits[n^2, 2]][[2 ;; -1 ;; 2]]]]; Array[a, 100, 0] (* Amiram Eldar, Jul 28 2025 *)

Formula

a(n) = A087117(A000290(n)).
Showing 1-6 of 6 results.