cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090288 a(n) = 2*n^2 + 6*n + 2.

Original entry on oeis.org

2, 10, 22, 38, 58, 82, 110, 142, 178, 218, 262, 310, 362, 418, 478, 542, 610, 682, 758, 838, 922, 1010, 1102, 1198, 1298, 1402, 1510, 1622, 1738, 1858, 1982, 2110, 2242, 2378, 2518, 2662, 2810, 2962, 3118, 3278, 3442, 3610, 3782, 3958, 4138, 4322, 4510
Offset: 0

Views

Author

Philippe Deléham, Jan 25 2004

Keywords

Comments

Values of polynomial K_2 related to A090285: a(n) = K_2(n) = Sum_{k>=0} A090285(2,k)*2^k*binomial(n,k).
Numbers k such that 2*k+5 is a square. - Vincenzo Librandi, Oct 10 2013
a(n) is the area of a triangle with vertices at (b(n-2),b(n-1)), (b(n),b(n+1)), and (b(n+2),B(n+3)) for b(k)=A000292(k) with n>1. - J. M. Bergot, Mar 23 2017

Crossrefs

Programs

Formula

a(n) = 2*A028387(n).
G.f.: 2*(1 +2*x -x^2)/(1-x)^3. - R. J. Mathar, Apr 02 2008
E.g.f.: 2*(1 +4*x +x^2)*exp(x). - G. C. Greubel, Jul 13 2017
Sum_{n>=0} 1/a(n) = 1/2 + Pi*tan(sqrt(5)*Pi/2)/(2*sqrt(5)). - Amiram Eldar, Dec 23 2022

Extensions

Corrected by T. D. Noe, Nov 12 2006