cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090582 T(n, k) = Sum_{j=0..n-k} (-1)^j*binomial(n - k + 1, j)*(n - k + 1 - j)^n. Triangle read by rows, T(n, k) for 1 <= k <= n.

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 24, 36, 14, 1, 120, 240, 150, 30, 1, 720, 1800, 1560, 540, 62, 1, 5040, 15120, 16800, 8400, 1806, 126, 1, 40320, 141120, 191520, 126000, 40824, 5796, 254, 1, 362880, 1451520, 2328480, 1905120, 834120, 186480, 18150, 510, 1, 3628800, 16329600, 30240000, 29635200, 16435440, 5103000, 818520, 55980, 1022, 1
Offset: 1

Views

Author

Hugo Pfoertner, Jan 11 2004

Keywords

Comments

Let Q(m, n) = Sum_(k=0..n-1) (-1)^k * binomial(n, k) * (n-k)^m. Then Q(m,n) is the numerator of the probability P(m,n) = Q(m,n)/n^m of seeing each card at least once if m >= n cards are drawn with replacement from a deck of n cards, written in a two-dimensional array read by antidiagonals with Q(m,m) as first row and Q(m,1) as first column.
The sequence is given as a matrix with the first row containing the cases #draws = size_of_deck. The second row contains #draws = 1 + size_of_deck. If "mn" indicates m cards drawn from a deck with n cards then the locations in the matrix are:
11 22 33 44 55 66 77 ...
21 32 43 54 65 76 87 ...
31 42 53 64 75 86 97 ...
41 52 63 74 85 .. .. ...
read by antidiagonals ->:
11, 22, 21, 33, 32, 31, 44, 43, 42, 41, 55, 54, 53, 52, ....
The probabilities are given by Q(m,n)/n^m:
.(m,n):.....11..22..21..33..32..31..44..43..42..41...55...54..53..52..51
.....Q:......1...2...1...6...6...1..24..36..14...1..120..240.150..30...1
...n^m:......1...4...1..27...8...1.256..81..16...1.3125.1024.243..32...1
%.Success:.100..50.100..22..75.100...9..44..88.100....4...23..62..94.100
P(n,n) = n!/n^n which can be approximated by sqrt(Pi*(2n+1/3))/e^n (Gosper's approximation to n!).
Let P[n] be the set of all n-permutations. Build a superset Q[n] of P[n] composed of n-permutations in which some (possibly all or none) ascents have been designated. An ascent in a permutation s[1]s[2]...s[n] is a pair of consecutive elements s[i],s[i+1] such that s[i] < s[i+1]. As a triangular array read by rows T(n,k) is the number of elements in Q[n] that have exactly k distinguished ascents, n >= 1, 0 <= k <= n-1. Row sums are A000670. E.g.f. is y/(1+y-exp(y*x)). For example, T(3,1)=6 because there are four 3-permutations with one ascent, with these we would also count 1->2 3, and 1 2->3 where exactly one ascent is designated by "->". (After Flajolet and Sedgewick.) - Geoffrey Critzer, Nov 13 2012
Sum_(k=1..n) Q(n, k)*binomial(x, k) = x^n such that Sum_{k=1..n} Q(n, i)*binomial(x+1,i+1) = Sum_{k=1..x} k^n. - David A. Corneth, Feb 17 2014
A141618(n,n-k+1) = a(n,k) * C(n,k-1) / k. - Tom Copeland, Oct 25 2014
See A074909 and above g.f.s below for associations among this array and the Bernoulli polynomials and their umbral compositional inverses. - Tom Copeland, Nov 14 2014
For connections to toric varieties and Eulerian polynomials (in addition to those noted below), see the Dolgachev and Lunts and the Stembridge links in A019538. - Tom Copeland, Dec 31 2015
See A008279 for a relation between the e.g.f.s enumerating the faces of permutahedra (this entry) and stellahedra. - Tom Copeland, Nov 14 2016
From the Hasan and Franco and Hasan papers: The m-permutohedra for m=1,2,3,4 are the line segment, hexagon, truncated octahedron and omnitruncated 5-cell. The first three are well-known from the study of elliptic models, brane tilings and brane brick models. The m+1 torus can be tiled by a single (m+2)-permutohedron. Relations to toric Calabi-Yau Kahler manifolds are also discussed. - Tom Copeland, May 14 2020

Examples

			For m = 4, n = 2, we draw 4 times from a deck of two cards. Call the cards "a" and "b" - of the 16 possible combinations of draws (each of which is equally likely to occur), only two do not contain both a and b: a, a, a, a and b, b, b, b. So the probability of seeing both a and b is 14/16. Therefore Q(m, n) = 14.
Table starts:
  [1] 1;
  [2] 2,      1;
  [3] 6,      6,       1;
  [4] 24,     36,      14,      1;
  [5] 120,    240,     150,     30,      1;
  [6] 720,    1800,    1560,    540,     62,     1;
  [7] 5040,   15120,   16800,   8400,    1806,   126,    1;
  [8] 40320,  141120,  191520,  126000,  40824,  5796,   254,   1;
  [9] 362880, 1451520, 2328480, 1905120, 834120, 186480, 18150, 510, 1.
		

Crossrefs

Cf. A073593 first m >= n giving at least 50% probability, A085813 ditto for 95%, A055775 n^n/n!, A090583 Gosper's approximation to n!.
Reflected version of A019538.
Cf. A233734 (central terms).

Programs

  • Haskell
    a090582 n k = a090582_tabl !! (n-1) !! (k-1)
    a090582_row n = a090582_tabl !! (n-1)
    a090582_tabl = map reverse a019538_tabl
    -- Reinhard Zumkeller, Dec 15 2013
    
  • Maple
    T := (n, k) -> add((-1)^j*binomial(n - k + 1, j)*(n - k + 1 - j)^n, j = 0..n-k):
    # Or:
    T := (n, k) -> (n - k + 1)!*Stirling2(n, n - k + 1):
    for n from 1 to 9 do seq( T(n, k), k = 1..n) od; # Peter Luschny, May 21 2021
  • Mathematica
    In[1]:= Table[Table[k! StirlingS2[n, k], {k, n, 1, -1}], {n, 1, 6}] (* Victor Adamchik, Oct 05 2005 *)
    nn=6; a=y/(1+y-Exp[y x]); Range[0,nn]! CoefficientList[Series[a, {x,0,nn}], {x,y}]//Grid (* Geoffrey Critzer, Nov 10 2012 *)
  • PARI
    a(n)={m=ceil((-1+sqrt(1+8*n))/2);k=m+1+binomial(m,2)-n;k*sum(i=1,k,(-1)^(i+k)*i^(m-1)*binomial(k-1,i-1))} \\ David A. Corneth, Feb 17 2014

Formula

T(n, k) = (n - k + 1)!*Stirling2(n, n - k + 1), generated by Stirling numbers of the second kind multiplied by a factorial. - Victor Adamchik, Oct 05 2005
Triangle T(n,k), 1 <= k <= n, read by rows given by [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...] DELTA [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 10 2006
From Tom Copeland, Oct 07 2008: (Start)
G(x,t) = 1/ (1 + (1-exp(x*t))/t) = 1 + 1*x + (2 + t)*x^2/2! + (6 + 6*t + t^2)*x^3/3! + ... gives row polynomials of A090582, the f-polynomials for the permutohedra (see A019538).
G(x,t-1) = 1 + 1*x + (1 + t)*x^2/2! + (1 + 4*t + t^2)*x^3/3! + ... gives row polynomials for A008292, the h-polynomials of permutohedra.
G[(t+1)x,-1/(t+1)] = 1 + (1 + t)*x + (1 + 3*t + 2*t^2)*x^2/2! + ... gives row polynomials of A028246. (End)
From Tom Copeland, Oct 11 2011: (Start)
With e.g.f. A(x,t) = G(x,t) - 1, the compositional inverse in x is
B(x,t) = log((t+1)-t/(1+x))/t. Let h(x,t) = 1/(dB/dx) = (1+x)*(1+(1+t)x), then the row polynomial P(n,t) is given by (1/n!)*(h(x,t)*d/dx)^n x, evaluated at x=0, A=exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t). (End)
k <= 0 or k > n yields Q(n, k) = 0; Q(1,1) = 1; Q(n, k) = k * (Q(n-1, k) + Q(n-1, k-1)). - David A. Corneth, Feb 17 2014
T = A008292*A007318. - Tom Copeland, Nov 13 2016
With all offsets 0 for this entry, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125 with offsets -1 so that the array becomes A008292; i.e., we ignore the first row and first column of A123125. Then the row polynomials of this entry, A090582, are given by A_n(1 + x;0). Other specializations of A_n(x;y) give A028246, A046802, A119879, A130850, and A248727. - Tom Copeland, Jan 24 2020