A090582 T(n, k) = Sum_{j=0..n-k} (-1)^j*binomial(n - k + 1, j)*(n - k + 1 - j)^n. Triangle read by rows, T(n, k) for 1 <= k <= n.
1, 2, 1, 6, 6, 1, 24, 36, 14, 1, 120, 240, 150, 30, 1, 720, 1800, 1560, 540, 62, 1, 5040, 15120, 16800, 8400, 1806, 126, 1, 40320, 141120, 191520, 126000, 40824, 5796, 254, 1, 362880, 1451520, 2328480, 1905120, 834120, 186480, 18150, 510, 1, 3628800, 16329600, 30240000, 29635200, 16435440, 5103000, 818520, 55980, 1022, 1
Offset: 1
Examples
For m = 4, n = 2, we draw 4 times from a deck of two cards. Call the cards "a" and "b" - of the 16 possible combinations of draws (each of which is equally likely to occur), only two do not contain both a and b: a, a, a, a and b, b, b, b. So the probability of seeing both a and b is 14/16. Therefore Q(m, n) = 14. Table starts: [1] 1; [2] 2, 1; [3] 6, 6, 1; [4] 24, 36, 14, 1; [5] 120, 240, 150, 30, 1; [6] 720, 1800, 1560, 540, 62, 1; [7] 5040, 15120, 16800, 8400, 1806, 126, 1; [8] 40320, 141120, 191520, 126000, 40824, 5796, 254, 1; [9] 362880, 1451520, 2328480, 1905120, 834120, 186480, 18150, 510, 1.
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Kevin Buhr, Michael Press and DMB, Collecting a deck of cards on the street. Thread in NG sci.math.
- José L. Cereceda, Figurate numbers and sums of powers of integers, arXiv:2001.03208 [math.NT], 2020. See triangle Table 1 p. 5.
- Tom Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, page 209.
- S. Franco and A. Hasan, Graded Quivers, Generalized Dimer Models and Toric Geometry, arXiv preprint arXiv:1904.07954 [hep-th], 2019.
- A. Hasan, Physics and Mathematics of Graded Quivers, dissertation, Graduate Center, City University of New York, 2019.
- Hugo Pfoertner, "Hit all" probabilities: Program and results.
Crossrefs
Programs
-
Haskell
a090582 n k = a090582_tabl !! (n-1) !! (k-1) a090582_row n = a090582_tabl !! (n-1) a090582_tabl = map reverse a019538_tabl -- Reinhard Zumkeller, Dec 15 2013
-
Maple
T := (n, k) -> add((-1)^j*binomial(n - k + 1, j)*(n - k + 1 - j)^n, j = 0..n-k): # Or: T := (n, k) -> (n - k + 1)!*Stirling2(n, n - k + 1): for n from 1 to 9 do seq( T(n, k), k = 1..n) od; # Peter Luschny, May 21 2021
-
Mathematica
In[1]:= Table[Table[k! StirlingS2[n, k], {k, n, 1, -1}], {n, 1, 6}] (* Victor Adamchik, Oct 05 2005 *) nn=6; a=y/(1+y-Exp[y x]); Range[0,nn]! CoefficientList[Series[a, {x,0,nn}], {x,y}]//Grid (* Geoffrey Critzer, Nov 10 2012 *)
-
PARI
a(n)={m=ceil((-1+sqrt(1+8*n))/2);k=m+1+binomial(m,2)-n;k*sum(i=1,k,(-1)^(i+k)*i^(m-1)*binomial(k-1,i-1))} \\ David A. Corneth, Feb 17 2014
Formula
T(n, k) = (n - k + 1)!*Stirling2(n, n - k + 1), generated by Stirling numbers of the second kind multiplied by a factorial. - Victor Adamchik, Oct 05 2005
Triangle T(n,k), 1 <= k <= n, read by rows given by [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...] DELTA [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 10 2006
From Tom Copeland, Oct 07 2008: (Start)
G(x,t) = 1/ (1 + (1-exp(x*t))/t) = 1 + 1*x + (2 + t)*x^2/2! + (6 + 6*t + t^2)*x^3/3! + ... gives row polynomials of A090582, the f-polynomials for the permutohedra (see A019538).
G(x,t-1) = 1 + 1*x + (1 + t)*x^2/2! + (1 + 4*t + t^2)*x^3/3! + ... gives row polynomials for A008292, the h-polynomials of permutohedra.
G[(t+1)x,-1/(t+1)] = 1 + (1 + t)*x + (1 + 3*t + 2*t^2)*x^2/2! + ... gives row polynomials of A028246. (End)
From Tom Copeland, Oct 11 2011: (Start)
With e.g.f. A(x,t) = G(x,t) - 1, the compositional inverse in x is
B(x,t) = log((t+1)-t/(1+x))/t. Let h(x,t) = 1/(dB/dx) = (1+x)*(1+(1+t)x), then the row polynomial P(n,t) is given by (1/n!)*(h(x,t)*d/dx)^n x, evaluated at x=0, A=exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t). (End)
k <= 0 or k > n yields Q(n, k) = 0; Q(1,1) = 1; Q(n, k) = k * (Q(n-1, k) + Q(n-1, k-1)). - David A. Corneth, Feb 17 2014
With all offsets 0 for this entry, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125 with offsets -1 so that the array becomes A008292; i.e., we ignore the first row and first column of A123125. Then the row polynomials of this entry, A090582, are given by A_n(1 + x;0). Other specializations of A_n(x;y) give A028246, A046802, A119879, A130850, and A248727. - Tom Copeland, Jan 24 2020
Comments