cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090592 (1,1) entry of powers of the orthogonal design shown below.

Original entry on oeis.org

1, -5, -17, 1, 121, 235, -377, -2399, -2159, 12475, 40063, -7199, -294839, -539285, 985303, 5745601, 4594081, -31031045, -94220657, 28776001, 717096601, 1232761195, -2554153817, -13737635999, -9596195279, 76971061435, 221115489823, -96566450399, -1740941329559
Offset: 1

Views

Author

Simone Severini, Dec 08 2003

Keywords

Comments

1 0 1 1 1 1 1 1
0 1 1 -1 1 -1 -1 1
-1 -1 1 0 1 1 -1 -1
-1 1 0 1 1 -1 1 -1
-1 -1 -1 -1 1 0 1 1
-1 1 -1 1 0 1 -1 1
-1 1 1 -1 -1 1 1 0
-1 -1 1 1 -1 -1 0 1

Crossrefs

Cf. A089181.

Programs

  • GAP
    a:=[1,-5];; for n in [3..30] do a[n]:=2*a[n-1]-7*a[n-2]; od; a; # Muniru A Asiru, Oct 23 2018
  • Magma
    I:=[1,-5]; [n le 2 select I[n] else 2*Self(n-1) - 7*Self(n-2): n in [1..30]]; // G. C. Greubel, Oct 22 2018
    
  • Mathematica
    Rest[CoefficientList[Series[x*(1-7*x)/(1-2*x+7*x^2), {x, 0, 30}], x]] (* G. C. Greubel, Oct 22 2018 *)
  • PARI
    x='x+O('x^30); Vec(x*(1-7*x)/(1-2*x+7*x^2)) \\ G. C. Greubel, Oct 22 2018
    

Formula

a(1) = 1, a(2) = -5, a(n) = 2*a(n-1) - 7*a(n-2). - Philippe Deléham, Mar 05 2012
G.f.: x*(1-7*x)/(1-2*x+7*x^2). - Philippe Deléham, Mar 05 2012
G.f.: G(0)/(2*x) -1/x, where G(k)= 1 + 1/(1 - x*(6*k+1)/(x*(6*k+7) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013

Extensions

Corrected and extended by Philippe Deléham, Mar 05 2012