cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A089181 (1,3) entry of powers of the orthogonal design shown in A090592.

Original entry on oeis.org

1, 2, -3, -20, -19, 102, 337, -40, -2439, -4598, 7877, 47940, 40741, -254098, -793383, 191920, 5937521, 10531602, -20499443, -114720100, -85944099, 631152502, 1863913697, -690240120, -14427876119, -24024071398, 52946990037, 274062479860, 177496029461
Offset: 1

Views

Author

Simone Severini, Dec 08 2003

Keywords

Programs

  • GAP
    a:=[1,2];; for n in [3..30] do a[n]:=2*a[n-1]-7*a[n-2]; od; a; # Muniru A Asiru, Oct 23 2018
  • Magma
    I:=[1,2]; [n le 2 select I[n] else 2*Self(n-1) - 7*Self(n-2): n in [1..30]]; // G. C. Greubel, Oct 22 2018
    
  • Mathematica
    LinearRecurrence[{2,-7},{1,2},40] (* Harvey P. Dale, Nov 04 2011 *)
  • PARI
    x='x+O('x^30); Vec(x/(1-2*x+7*x^2)) \\ G. C. Greubel, Oct 22 2018
    
  • Sage
    [lucas_number1(n,2,7) for n in range(1, 18)] #  Zerinvary Lajos, Apr 23 2009
    

Formula

a(n) = 2*a(n-1) - 7*a(n-2); a(1)=1, a(2)=2. - T. D. Noe, Dec 11 2006
G.f.: x/(1 - 2*x + 7*x^2). - Philippe Deléham, Mar 04 2012

Extensions

Corrected by T. D. Noe, Dec 11 2006
Extended by T. D. Noe, May 23 2011

A221131 Table, T, read by antidiagonals where T(-j,k) = ((1+sqrt(j))^k + (1-sqrt(j))^k)/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -2, 1, 1, 1, -2, -5, -4, 1, 1, 1, -3, -8, -7, -4, 1, 1, 1, -4, -11, -8, 1, 0, 1, 1, 1, -5, -14, -7, 16, 23, 8, 1, 1, 1, -6, -17, -4, 41, 64, 43, 16, 1, 1, 1, -7, -20, 1, 76, 117, 64, 17, 16, 1, 1, 1, -8, -23, 8, 121, 176, 29, -128, -95, 0, 1
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com) and Robert G. Wilson v, Jan 02 2013

Keywords

Comments

.j\k.........0..1...2....3...4....5....6......7.......8......9......10
.0: A000012..1..1...1....1...1....1....1......1.......1......1.......1
-1: A146559..1..1...0...-2..-4...-4....0......8......16.....16.......0
-2: A087455..1..1..-1...-5..-7....1...23.....43......17....-95....-241
-3: A138230..1..1..-2...-8..-8...16...64.....64....-128...-512....-512
-4: A006495..1..1..-3..-11..-7...41..117.....29....-527..-1199.....237
-5: A138229..1..1..-4..-14..-4...76..176...-104...-1264..-1904....3776
-6: A090592..1..1..-5..-17...1..121..235...-377...-2399..-2159...12475
-7: A090590..1..1..-6..-20...8..176..288...-832...-3968..-1280...29184
-8: A025172..1..1..-7..-23..17..241..329..-1511...-5983...1633...57113
-9: A120743..1..1..-8..-26..28..316..352..-2456...-8432...7696...99712
-10: ........1..1..-9..-29..41..401..351..-3709..-11279..18241..160551

Crossrefs

Programs

  • Mathematica
    T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; Table[ T[ -j + k, k], {j, 0, 11}, {k, 0, j}] // Flatten
Showing 1-2 of 2 results.