A074191 Duplicate of A090630.
1, 1, 1, 8, 8, 144, 144, 576, 5184, 518400, 518400, 2073600, 2073600, 101606400
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The a(1) = 0 through a(9) = 18 divisors: 1: 1 2: 1 6: 1 24: 1,4,8 120: 1,4,8 720: 1,4,8,9,16,36,144 5040: 1,4,8,9,16,36,144 40320: 1,4,8,9,16,32,36,64,128,144,576 362880: 1,4,8,9,16,27,32,36,64,81,128,144,216,324,576,1296,1728,5184
perpouQ[n_]:=Or[n==1,GCD@@FactorInteger[n][[All,2]]>1]; Table[Length[Select[Divisors[n!],perpouQ]],{n,0,15}]
a(n) = sumdiv(n!, d, (d==1) || ispower(d)); \\ Michel Marcus, Aug 19 2020
addhelp(val, "exponent of prime p in n!") val(n, p) = my(r=0); while(n, r+=n\=p);r a(n) = {if(n<=3, return(1)); my(pr = primes(primepi(n\2)), v = vector(#pr, i, val(n, pr[i])), res = 1, cv); for(i = 2, v[1], if(issquarefree(i), cv = v\i; res-=(prod(i = 1, #cv, cv[i]+1)-1)*(-1)^omega(i) ) ); res } \\ David A. Corneth, Aug 19 2020
The a(0) = 1 through a(4) = 15 divisors: 1 2 12 360 75600 ------------------------- 1 1 1 1 1 4 4 4 8 8 9 9 36 16 25 27 36 100 144 216 225 400 900 3600
chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; perpouQ[n_]:=Or[n==1,GCD@@FactorInteger[n][[All,2]]>1]; Table[Length[Select[Divisors[chern[n]],perpouQ]],{n,0,5}]
a(n) = {1 + sum(k=2, n, moebius(k)*(1 - prod(i=1, n, 1 + i\k)))} \\ Andrew Howroyd, Aug 30 2020
perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; f[n_] := Block[{d = Divisors[n!], k = 1}, While[ ! perfectPowerQ[ d[[-k]]], k++]; n!/d[[-k]]]; Array[f, 41, 0] (* or *) f[n_] := Block[{fi = FactorInteger[n!]}, n!/Times @@ (#1[[1]] ^ (2 Quotient[#1[[2]],2])&) /@ fi]; f[4] = 3; f[5] = 15; f[21] = 230945; Array[f, 40]
nn=5;Select[Range[nn!],MemberQ[Array[Factorial,nn],Length[Divisors[#]]]&]
Comments