cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A258651 A(n,k) = n^(k) = k-th arithmetic derivative of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 0, 0, 4, 5, 0, 0, 0, 0, 4, 1, 6, 0, 0, 0, 0, 4, 0, 5, 7, 0, 0, 0, 0, 4, 0, 1, 1, 8, 0, 0, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 0, 0, 4, 0, 0, 0, 16, 6, 10, 0, 0, 0, 0, 4, 0, 0, 0, 32, 5, 7, 11, 0, 0, 0, 0, 4, 0, 0, 0, 80, 1, 1, 1, 12
Offset: 0

Views

Author

Alois P. Heinz, Jun 06 2015

Keywords

Examples

			Square array A(n,k) begins:
  0,  0,  0,  0,  0,   0,   0,   0,    0,    0, ...
  1,  0,  0,  0,  0,   0,   0,   0,    0,    0, ...
  2,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  3,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  4,  4,  4,  4,  4,   4,   4,   4,    4,    4, ...
  5,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  6,  5,  1,  0,  0,   0,   0,   0,    0,    0, ...
  7,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  8, 12, 16, 32, 80, 176, 368, 752, 1520, 3424, ...
  9,  6,  5,  1,  0,   0,   0,   0,    0,    0, ...
		

Crossrefs

Rows n=0,1,4,8 give: A000004, A000007, A010709, A129150.
Row 15: A090636, Row 28: A090637, Row 63: A090635, Row 81: A129151, Row 128: A369638, Row 1024: A214800, Row 15625: A129152.
Main diagonal gives A185232.
Antidiagonal sums give A258652.
Cf. also A328383.

Programs

  • Maple
    d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
    A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:
    seq(seq(A(n, h-n), n=0..h), h=0..14);
  • Mathematica
    d[n_] := n*Sum[i[[2]]/i[[1]], {i, FactorInteger[n]}]; d[0] = d[1] = 0;
    A[n_, k_] := A[n, k] = If[k == 0, n, d[A[n, k-1]]];
    Table[A[n, h-n], {h, 0, 14}, {n, 0, h}] // Flatten (* Jean-François Alcover, Apr 27 2017, translated from Maple *)

Formula

A(n,k) = A003415^k(n).

A129150 The n-th arithmetic derivative of 2^3.

Original entry on oeis.org

8, 12, 16, 32, 80, 176, 368, 752, 1520, 3424, 8592, 20096, 70464, 235072, 705280, 3023616, 13223680, 55540736, 278539264, 1392697344, 9541095424, 58609614848, 410267320320, 3397142953984, 24143851798528, 176071227916288, 1232666139967488, 9523075842834432
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 01 2007

Keywords

Comments

Conjecture: a strictly increasing sequence. - J. Lowell, Sep 10 2008
The sequence is strictly increasing because (4*n)' = 4*n + 4*n'. - David Radcliffe, Aug 19 2014
8 is the smallest integer that has a nontrivial trajectory (not going to 0 nor reduced to a fixed point as 4) under A003415, but 15 = A090636(1) has 8 as second term in its trajectory. 20 is the next larger such integer with a distinct trajectory, but has two larger predecessors, cf. A090635. - M. F. Hasler, Nov 27 2019
In general, the trajectory of p^(p+1) under A003415 has a common factor p^p, and divided by p^p it gives the trajectory of p under A129283: n -> n + n'. Here we have the case p = 2 (see A129284 for a(n)/2^2), cf. A129151 and A129152 for p = 3 and 5. - M. F. Hasler, Nov 28 2019

Crossrefs

Programs

  • Haskell
    a129150 n = a129150_list !! n
    a129150_list = iterate a003415 8  -- Reinhard Zumkeller, Apr 29 2012
    
  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; s = 2^3; Join[{s}, Table[s = dn[s], {28}]] (* T. D. Noe, Mar 07 2013 *)
  • PARI
    A129150(n,a=8)={if(n<0, vector(-n,n, if(n>1, a=A003415(a), a)), for(n=1,n, a=A003415(a)); a)}  \\ For n<0 return the vector a[0..-n-1]. - M. F. Hasler, Nov 27 2019

Formula

a(n+1) = A003415(a(n)), a(0) = 2^3 = 8.
a(n) = A090636(n+2).
A129251(a(n)) > 0. - Reinhard Zumkeller, Apr 07 2007
a(n) = 4*A129284(n). - M. F. Hasler, Nov 27 2019

Extensions

a(21)-a(27) from Paolo P. Lava, Apr 16 2012

A090635 Trajectory of 63 under the map k -> A003415(k) (taking the arithmetic derivative).

Original entry on oeis.org

63, 51, 20, 24, 44, 48, 112, 240, 608, 1552, 3120, 8144, 16304, 32624, 65264, 130544, 264928, 678448, 1356912, 4979232, 19424016, 58272480, 226593936, 763164288, 3467499840, 16339520448, 65370077568, 295266178368, 1223245608192, 6931725175296, 40582548986112
Offset: 1

Views

Author

N. J. A. Sloane, Dec 14 2003

Keywords

References

  • A. M. Gleason et al., The William Lowell Putnam Mathematical Competition: Problems and Solutions 1938-1964, Math. Assoc. America, 1980, p. 295.

Crossrefs

Programs

  • PARI
    A090635(n, a=63)={if(n<0, vector(-n, n, if(n>1, a=A003415(a), a)), for(n=2, n, a=A003415(a)); a)}  \\ For n<0 return the vector a[1..-n]. - M. F. Hasler, Nov 27 2019

Formula

a(n+1) = A003415(a(n)), a(1) = 63. a(n) = 4*A129286(n-3) for n > 2. - M. F. Hasler, Nov 27 2019

Extensions

More explicit name from M. F. Hasler, Nov 27 2019

A129285 a(n) = A129151(n) / 27.

Original entry on oeis.org

3, 4, 8, 20, 44, 92, 188, 380, 856, 2148, 5024, 17616, 58768, 176320, 755904, 3305920, 13885184, 69634816, 348174336, 2385273856, 14652403712, 102566830080, 849285738496, 6035962949632, 44017806979072, 308166534991872, 2380768960708608, 23410894780694528
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 07 2007

Keywords

Crossrefs

Cf. A129284 (essentially the same), A129283 (n + n'), A129286, A051674, A129150, A090636 (trajectory of 15 under arithmetic derivative A003415).

Programs

Formula

a(n+1) = A129283(a(n)), a(0) = 3.
a(n) = A129284(n+1). - Eric M. Schmidt, Oct 22 2013
Thus a(n) = A129150(n+1) / 4 = A090636(n+3) / 4. - M. F. Hasler, Nov 27 2019

A090637 Trajectory of 28 under the map k -> A003415(k) (taking the arithmetic derivative).

Original entry on oeis.org

28, 32, 80, 176, 368, 752, 1520, 3424, 8592, 20096, 70464, 235072, 705280, 3023616, 13223680, 55540736, 278539264, 1392697344, 9541095424, 58609614848, 410267320320, 3397142953984, 24143851798528, 176071227916288, 1232666139967488, 9523075842834432
Offset: 1

Views

Author

N. J. A. Sloane, Dec 14 2003

Keywords

Comments

Equals A090636 from a(2) = 32 = A090636(5) on. See there and A090635 for more.

Examples

			a(2) = 28' = (2^2*7)' = 28*(2/2 + 1/7) = 32.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 28, (t->
          t*add(i[2]/i[1], i=ifactors(t)[2]))(a(n-1)))
        end:
    seq(a(n), n=1..31);  # Alois P. Heinz, Dec 02 2019
  • Mathematica
    a[n_] := a[n] = If[n == 1, 28, Function[t, t*Sum[i[[2]]/i[[1]], {i, FactorInteger[t]}]][a[n-1]]];Table[a[n], {n, 1, 31}] (* Jean-François Alcover, Jan 13 2025, after Alois P. Heinz *)
  • PARI
    a(n)=A090636(n,28)

Extensions

Edited by M. F. Hasler, Nov 27 2019
Showing 1-5 of 5 results.