A090672 a(n) = (n^2-1)*n!/3.
0, 2, 16, 120, 960, 8400, 80640, 846720, 9676800, 119750400, 1596672000, 22832409600, 348713164800, 5666588928000, 97639686144000, 1778437140480000, 34145993097216000, 689322235650048000, 14597412049059840000, 323575967087493120000, 7493338185184051200000
Offset: 1
Keywords
References
- D. Daly and P. Vojtechovsky, Displacement of permutations, preprint, 2003.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..300
- Ian R. Harris and Ryan P. A. McShane, Counting Tournaments with a Specified Number of Circular Triads, Journal of Integer Sequences, Vol. 27 (2024), Article 24.8.7. See pages 2, 23.
- J. B. Kadane, Some equivalence classes in paired comparisons, The Annals of Mathematical Statistics, 37 (1966), 488-494.
Programs
-
Magma
[(n^2-1)*Factorial(n)/3: n in [1..25]]; // Vincenzo Librandi, Oct 11 2011
-
Mathematica
nn=20;Drop[Range[0,nn]!CoefficientList[Series[ x^3/3/(1-x)^2,{x,0,nn}],x],2] (* Geoffrey Critzer, Mar 04 2013 *)
Formula
a(n) = (n+3)! * Sum_{k=1..n} (k+1)!/(k+3)!, with offset 0. - Gary Detlefs, Aug 05 2010
E.g.f.: (x^3 - 3*x^2)/(3*(x-1)^3). - Geoffrey Critzer, Mar 04 2013
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=2} 1/a(n) = (3/2)*(Ei(1) - gamma) - 3*e + 27/4, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=2} (-1)^n/a(n) = (3/2)*(gamma - Ei(-1)) - 3/4, where Ei(-1) = -A099285. (End)
Comments