A005990
a(n) = (n-1)*(n+1)!/6.
Original entry on oeis.org
0, 1, 8, 60, 480, 4200, 40320, 423360, 4838400, 59875200, 798336000, 11416204800, 174356582400, 2833294464000, 48819843072000, 889218570240000, 17072996548608000, 344661117825024000, 7298706024529920000, 161787983543746560000
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..300
- D. Dumont, Interpretations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
- Alice L. L. Gao, Emily X. L. Gao, and Brian Y. Sun, Zubieta's Conjecture on the Enumeration of Corners in Tree-like Tableaux, arXiv:1511.05434 [math.CO], 2015. The second version of this paper has a different title and different authors: A. L. L. Gao, E. X. L. Gao, P. Laborde-Zubieta, and B. Y. Sun, Enumeration of Corners in Tree-like Tableaux and a Conjectural (a,b)-analogue, arXiv preprint arXiv:1511.05434v2, 2015.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Eric Weisstein's World of Mathematics, Alternating Group Graph.
- Eric Weisstein's World of Mathematics, Graph Cycle.
-
[(n-1)*Factorial(n+1)/6: n in [1..25]]; // Vincenzo Librandi, Oct 11 2011
-
[ seq((n-1)*(n+1)!/6,n=1..40) ];
a:=n->sum(sum(sum(n!/6, j=1..n),k=-1..n),m=0..n): seq(a(n), n=0..19); # Zerinvary Lajos, May 11 2007
seq(sum(mul(j,j=3..n), k=3..n)/3, n=2..21); # Zerinvary Lajos, Jun 01 2007
restart: G(x):=x^3/(1-x)^2: f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/3!,n=2..21); # Zerinvary Lajos, Apr 01 2009
-
Table[Sum[n!/6, {i, 3, n}], {n, 2, 21}] (* Zerinvary Lajos, Jul 12 2009 *)
Table[(n - 1) (n + 1)!/6, {n, 20}] (* Harvey P. Dale, Apr 07 2019 *)
Table[(n - 1) Pochhammer[4, n - 2], {n, 20}] (* Eric W. Weisstein, Jun 09 2019 *)
Table[(n - 1) Gamma[n + 2]/6, {n, 20}] (* Eric W. Weisstein, Jun 09 2019 *)
Range[0, 20]! CoefficientList[Series[x/(1 - x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Jun 09 2019 *)
-
a(n)=(n-1)*(n+1)!/6 \\ Charles R Greathouse IV, May 24 2013
Better definition from Robert Newstedt
A008303
Triangle read by rows: T(n,k) (n >= 1, 0 <= k <= ceiling(n/2)-1) = number of permutations of [n] with k peaks.
Original entry on oeis.org
1, 2, 4, 2, 8, 16, 16, 88, 16, 32, 416, 272, 64, 1824, 2880, 272, 128, 7680, 24576, 7936, 256, 31616, 185856, 137216, 7936, 512, 128512, 1304832, 1841152, 353792, 1024, 518656, 8728576, 21253376, 9061376, 353792, 2048, 2084864, 56520704, 222398464, 175627264, 22368256
Offset: 1
Triangle T(n,k) (with rows n >= 1 and columns k >= 0) starts as follows:
[ 1] 1;
[ 2] 2;
[ 3] 4, 2;
[ 4] 8, 16;
[ 5] 16, 88, 16;
[ 6] 32, 416, 272;
[ 7] 64, 1824, 2880, 272;
[ 8] 128, 7680, 24576, 7936;
[ 9] 256, 31616, 185856, 137216, 7936;
[10] 512, 128512, 1304832, 1841152, 353792;
A000079, A000431, A000487, A000517, A179708, ...
T(3,1) = 2 because we have 132 and 231.
From _Petros Hadjicostas_, Aug 07 2019: (Start)
In terms of André's (1895) notation (see the comments above), we have Q(4, 2) = T(3, 0) = 4 and Q(4, 4) = T(3, 1) = 2.
Out of the (4-1)! = 6 circular permutations of [4], each of the permutations 1324 and 1423 has exactly 4 so-called "séquences" ("alternate runs"), while each of the rest (1234, 1243, 1342, and 1432) has exactly 2 so-called "séquences" ("alternate runs").
In detail, we list the so-called "séquences" ("alternate runs") of the above circular permutations:
1234 --> 1234 and 41 (maximum 4 and minimum 1).
1243 --> 124 and 431 (maximum 4 and minimum 1).
1324 --> 13, 32, 24, and 41 (maxima 3, 4, and minima 1, 2).
1342 --> 134 and 421 (maximum 4 and minimum 1).
1423 --> 14, 42, 23, and 31 (maxima 3, 4 and minima 1, 2),
1432 --> 14 and 4321 (maximum 4 and minimum 1).
(End)
- Florence Nightingale David and D. E. Barton, Combinatorial Chance, Charles Griffin, 1962; see Table 10.6, p. 163. [They use the notation T_{N,t^*}^{**}, where N is the length of the permutation and t^* is the number of peaks in the permutation. They also give André's recurrence. So, here n = N and k = t^*. - Petros Hadjicostas, Aug 09 2019]
- Florence Nightingale David, Maurice George Kendall, and D. E. Barton, Symmetric Functions and Allied Tables, Cambridge, 1966, p. 261, Table 7.3.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, Ex. 3.3.46. - Emeric Deutsch, Jul 26 2009
- T. K. Petersen, Eulerian Numbers, Birkhäuser, 2015, Chapter 4.
- Alois P. Heinz, Rows n = 1..200, flattened (first 30 rows from Vincenzo Librandi)
- Max A. Alekseyev, On the number of permutations with bounded run lengths, arXiv preprint arXiv:1205.4581 [math.CO], 2012-2013. - From _N. J. A. Sloane_, Oct 23 2012
- Désiré André, Mémoire sur les séquences des permutations circulaires, Bulletin de la S. M. F., tome 23 (1895), pp. 122-184.
- T. Austin, R. Fagen, T. Lehrer, and W. Penney, The distribution of the number of locally maximal elements in a random sample, Ann. Math. Statist. 28 (1957), 786-790. - _Ira M. Gessel_, Aug 06 2014
- Jean-Luc Baril and José L. Ramírez, Some distributions in increasing and flattened permutations, arXiv:2410.15434 [math.CO], 2024. See p. 3.
- S. Billey, K. Burdzy, and B. E. Sagan, Permutations with given peak set, arXiv: 1209.0693 [math.CO], 2012.
- S. Billey, K. Burdzy, and B. E. Sagan, Permutations with given peak set, J. Int. Seq. 16 (2013), #13.6.1.
- C.-O. Chow and S.-M. Ma, Counting signed permutations by their alternating runs, Discrete Mathematics, 323 (2014), 49-57.
- C.-O. Chow, S.-M. Ma, T. Mansour, and M. Shattuck, Counting permutations by cyclic peaks and valleys, Annales Mathematicae et Informaticae 43 (2014), 43-54.
- Kieran Clenaghan, In Praise of Sequence (Co-)Algebra and its implementation in Haskell, arXiv:1812.05878 [math.CO], 2019. See page 36.
- Colin Defant, Troupes, Cumulants, and Stack-Sorting, arXiv:2004.11367 [math.CO], 2020.
- Ming-Jian Ding and Bao-Xuan Zhu, Some results related to Hurwitz stability of combinatorial polynomials, Advances in Applied Mathematics, Volume 152, (2024), 102591. See p. 13.
- S. Elizalde and M. Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125; see Section 5.
- R. C. Entringer, Enumeration of permutations of (1,...,n) by number of maxima, Duke Math. J. 36 (1969), 575-579. - _Ira M. Gessel_, Oct 23 2013
- C. J. Fewster and D. Siemssen, Enumerating Permutations by their Run Structure, arXiv preprint arXiv:1403.1723 [math.CO], 2014.
- FindStat - Combinatorial Statistic Finder, The number of inner peaks of a permutation, The number of peaks of a permutation, The number of valleys of a permutation.
- W. O. Kermack and A. G. McKendrick, Some distributions associated with a randomly arranged set of numbers, Proc. Royal Soc. of Edinburgh 67 (1937), 332-376.
- W. O. Kermack and A. G. McKendrick, Some properties of points arranged on a Möbius surface, Mathematical Gazette 22 (1938), 66-72.
- Shi-Mei Ma, Derivative polynomials and permutations by numbers of interior peaks and left peaks, arXiv preprint arXiv:1106.5781 [math.CO], 2011.
- Shi-Mei Ma, Enumeration of permutations by number of alternating runs, Discrete Math., 313 (2013), 1816-1822.
- S.-M. Ma, T. Mansour, and D. G. L. Wang, Combinatorics of Dumont differential system on the Jacobi elliptic functions, arXiv preprint arXiv:1403.0233 [math.CO], 2014.
- Shi-Mei Ma, Toufik Mansour, David G.L. Wang, and Yeong-Nan Yeh, Several variants of the Dumont differential system and permutation statistics, Science China Mathematics 60 (2018).
- Shi-Mei Ma, Jun Ma, Jean Yeh, and Yeong-Nan Yeh, The 1/k-Eulerian polynomials of type B, arXiv:2001.07833 [math.CO], 2020.
- A. Mendes and J. B. Remmel, Permutations and words counted by consecutive patterns, Adv. Appl. Math. 37(4) (2006), 443-480.
- Tom Roberts and Thomas Prellberg, Improving Convergence of Generalised Rosenbluth Sampling for Branched Polymer Models by Uniform Sampling, arXiv:2401.12201 [cond-mat.stat-mech], 2024. See p. 14.
- Louis W. Shapiro, Wen-Jin Woan, and Seyoum Getu, Runs, slides and moments, SIAM J. Algebraic and Discrete Methods 4 (1983), 459-466; see p. 461.
- Bao-Xuan Zhu, Stieltjes moment properties and continued fractions from combinatorial triangles, arXiv:2007.14924 [math.CO], 2020, see p. 27.
- Yan Zhuang, Monoid networks and counting permutations by runs, arXiv preprint arXiv:1505.02308 [math.CO], 2015.
- Yan Zhuang, Counting permutations by runs, J. Comb. Theory Ser. A 142 (2016), pp. 147-176.
Sum of entries in row n is n! =
A000142(n).
T(2n, n-1) = T(2n+1, n) =
A000182(n+1) (the tangent numbers). (End)
-
# The Maple program yields (by straightforward counting) the generating polynomial of the row n specified in the program.
n := 8: with(combinat): P := permute(n): st := proc (p) local ct, j: ct := 0: for j from 2 to nops(p)-1 do if p[j-1] < p[j] and p[j+1] < p[j] then ct := ct+1 else end if end do: ct end proc: sort(add(t^st(P[j]), j = 1 .. factorial(n))); # Emeric Deutsch, Jul 26 2009
# Second Maple program:
a := 1+sqrt(1-t): b := 1-sqrt(1-t): G := (exp(b*z)-exp(a*z))/(b*exp(a*z)-a*exp(b*z)): Gser := simplify(series(G, z = 0, 15)): for n to 12 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n to 12 do seq(coeff(P[n], t, j), j = 0 .. ceil((1/2)*n)-1) end do; # yields sequence in triangular form - Emeric Deutsch, Jul 26 2009
# Third Maple program:
b:= proc(u, o, t) option remember; expand(`if`(u+o=0, 1,
add(b(u-j, o+j-1, 0)*x^t, j=1..u)+
add(b(u+j-1, o-j, 1), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
seq(T(n), n=1..15); # Alois P. Heinz, May 22 2014
# Recurrence of D. André (1895).
T := proc(n, k) option remember;
if n < 1 or 2*k > (n-1) then return 0 fi;
if k = 0 then return 2^(n-1) fi;
(2*k + 2)*T(n-1, k) + (n - 2*k)*T(n-1, k-1) end:
seq(seq(T(n, k), k=0..(n-1)/2), n=1..12); # Peter Luschny, Aug 06 2019
-
From Luc Roy, Jul 08 2010: (Start)
It appears that one-half of the sequence A008303 can be obtained with this Mathematica program:
Expand[CoefficientList[Simplify[InverseSeries[Integrate[
Series[(1 + m Sinh[x]^2)^(-1), {x, 0, 15}, {m, 0, 15}], x]]], x]
Denominator[CoefficientList[Series[Exp[x], {x, 0, 15}], x]]]
(* Mathematica Output of Luc Roy's program *)
{0, 1, 0, 2 m, 0, 8 m + 16 m^2, 0, 32 m + 416 m^2 + 272 m^3, 0, 128 m + 7680 m^2 + 24576 m^3 + 7936 m^4, 0, 512 m + 128512 m^2 + 1304832 m^3 + 1841152 m^4 + 353792 m^5, 0, 2048 m + 2084864 m^2 + 56520704 m^3 + 222398464 m^4 + 175627264 m^5 + 22368256 m^6, 0, 8192 m + 33497088 m^2 + 2230947840 m^3 + 20261765120 m^4 + 41731645440 m^5 + 21016670208 m^6 + 1903757312 m^7}
(End)
(* Another Mathematica program *)
m = 14; a = 1 + Sqrt[1 - t]; b = 1 - Sqrt[1 - t];
g[z_] = (E^(b*z) - E^(a*z))/(b*E^(a*z) - a*E^(b*z));
gser = Series[g[z], {z, 0, m}];
Do[p[n]=n!*Coefficient[gser, z, n]//Simplify, {n, 0, m}];
Flatten[ Table[ Coefficient[p[n], t, j], {n, 0, m}, {j, 0, Ceiling[n/2] - 1}]]
(* Jean-François Alcover, May 27 2011, after Emeric Deutsch *)
(* To get the triangle from Jean-François Alcover's Mathematica program *)
FormTable[Table[Coefficient[p[n], t, j], {n, 0, m}, {j, 0, Ceiling[n/2] - 1}]]
(* Petros Hadjicostas, Aug 06 2019 *)
gf := Sqrt[x - 1] Cot[y Sqrt[x - 1]] - 1; ser := Series[1/gf, {y, 0, 16}];
cy[n_] := n! Coefficient[ser, y, n]; row[n_] := CoefficientList[cy[n], x];
Table[row[n], {n, 1, 12}] // Flatten (* Peter Luschny, Aug 06 2019 *)
-
{T(n, k) = if(n<1, 0, my(z = sqrt(1 - y + y*O(y^(n\2)))); n!*polcoef(polcoef(z/(z - tanh(x*z)), n, x), k))}; /* Michael Somos, May 24 2023 */
A052571
E.g.f. x^3/(1-x)^2.
Original entry on oeis.org
0, 0, 0, 6, 48, 360, 2880, 25200, 241920, 2540160, 29030400, 359251200, 4790016000, 68497228800, 1046139494400, 16999766784000, 292919058432000, 5335311421440000, 102437979291648000, 2067966706950144000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Column 5 of
A257503 (apart from zero terms. Equally, row 5 of
A257505).
Cf. sequences with formula (n + k)*n! listed in
A282466.
-
[0,0] cat [n*(n+1)*(n+2)*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
-
spec := [S,{S=Prod(Z,Z,Z,Sequence(Z),Sequence(Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
[seq (n*(n+1)*(n+2)*n!,n=0..17)]; # Zerinvary Lajos, Nov 25 2006
a:=n->add((n!),j=1..n-2):seq(a(n), n=0..21); # Zerinvary Lajos, Aug 27 2008
G(x):=x^3/(1-x)^2: f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 01 2009
-
Table[Sum[n!, {i, 3, n}], {n, 0, 19}] (* Zerinvary Lajos, Jul 12 2009 *)
With[{nn=20},CoefficientList[Series[x^3/(1-x)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 27 2025 *)
-
(define (A052571 n) (if (< n 2) 0 (* (- n 2) (A000142 n)))) ;; Antti Karttunen, May 07 2015
A138770
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} such that there are exactly k entries between the entries 1 and 2 (n>=2, 0<=k<=n-2).
Original entry on oeis.org
2, 4, 2, 12, 8, 4, 48, 36, 24, 12, 240, 192, 144, 96, 48, 1440, 1200, 960, 720, 480, 240, 10080, 8640, 7200, 5760, 4320, 2880, 1440, 80640, 70560, 60480, 50400, 40320, 30240, 20160, 10080, 725760, 645120, 564480, 483840, 403200, 322560, 241920, 161280, 80640
Offset: 2
T(4,2)=4 because we have 1342, 1432, 2341 and 2431.
Triangle starts:
2;
4,2;
12,8,4;
48,36,24,12;
240,192,144,96,48;
...
-
T:=proc(n,k) if n-2 < k then 0 else (2*n-2*k-2)*factorial(n-2) end if end proc; for n from 2 to 10 do seq(T(n, k),k=0..n-2) end do; # yields sequence in triangular form
-
Table[Table[2 (n - r) (n - 2)!, {r, 1, n - 1}], {n, 1, 10}] // Grid (* Geoffrey Critzer, Dec 19 2009 *)
A305730
a(n) is the total displacement of all letters in all permutations of n letters with no fixed points.
Original entry on oeis.org
0, 0, 2, 8, 60, 440, 3710, 34608, 355992, 4004880, 48948570, 646121080, 9163171732, 138974771208, 2244977073430, 38485321258720, 697867158824880, 13346709412525728, 268504389357870642, 5668425997555046760, 125302048367006296940, 2894477317277845459160
Offset: 0
n | 1 2 3 4 | the displacement of all letters | a(n)
--+---------+---------------------------------+------
2 | 2 1 | 1 + 1 = 2 | 2
3 | 2 3 1 | 1 + 1 + 2 = 4 | 8
| 3 1 2 | 2 + 1 + 1 = 4 |
4 | 2 1 4 3 | 1 + 1 + 1 + 1 = 4 | 60
| 2 3 4 1 | 1 + 1 + 1 + 3 = 6 |
| 2 4 1 3 | 1 + 2 + 2 + 1 = 6 |
| 3 1 4 2 | 2 + 1 + 1 + 2 = 6 |
| 3 4 1 2 | 2 + 2 + 2 + 2 = 8 |
| 3 4 2 1 | 2 + 2 + 1 + 3 = 8 |
| 4 1 2 3 | 3 + 1 + 1 + 1 = 6 |
| 4 3 1 2 | 3 + 1 + 2 + 2 = 8 |
| 4 3 2 1 | 3 + 1 + 1 + 3 = 8 |
A306258
a(n) = floor(n^2/4)*n!.
Original entry on oeis.org
0, 0, 2, 12, 96, 720, 6480, 60480, 645120, 7257600, 90720000, 1197504000, 17244057600, 261534873600, 4271736268800, 73229764608000, 1339058552832000, 25609494822912000, 518592270163968000, 10948059036794880000, 243290200817664000000
Offset: 0
-
Table[Floor[n^2/4]n!,{n,0,40}] (* Harvey P. Dale, Jan 16 2023 *)
-
a(n) = floor(n^2/4)*n!;
Showing 1-6 of 6 results.
Comments