cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A091924 Primes such that their decimal representations interpreted in base 11 are also prime.

Original entry on oeis.org

2, 3, 5, 7, 29, 43, 61, 67, 89, 139, 193, 197, 199, 227, 263, 269, 281, 331, 353, 373, 379, 467, 571, 601, 607, 643, 733, 797, 809, 821, 827, 887, 919, 937, 1033, 1039, 1093, 1129, 1231, 1237, 1259, 1277, 1303, 1327, 1381, 1451, 1453, 1459, 1583
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 13 2004

Keywords

Comments

See A090711 for a similar sequence whose definition works "in the opposite direction". - M. F. Hasler, Jan 03 2014

Examples

			A000040(10)=29 in base 11 is 2*11^1+9*11^0=31 prime, therefore 29 is a term.
		

Crossrefs

Cf. A091923.

Programs

  • Magma
    [n:n in PrimesUpTo(1600)| IsPrime(Seqint(Intseq(n),11))]; // Marius A. Burtea, Jun 30 2019
  • Maple
    filter:= proc(n) local L;
      if not isprime(n) then return false fi;
      L:= convert(n,base,10);
      isprime(add(L[i]*11^(i-1),i=1..nops(L)))
    end proc:
    select(filter, [2, seq(i,i=3..10000,2)]); # Robert Israel, Jan 28 2018
  • Mathematica
    Select[Prime@ Range@ 250, PrimeQ@ FromDigits[IntegerDigits@ #, 11] &] (* Michael De Vlieger, Aug 29 2015 *)
  • PARI
    is(p,b=11)={my(d=digits(p));isprime(vector(#d,i,b^(#d-i))*d~)&&isprime(p)} \\ M. F. Hasler, Jan 03 2014
    

Formula

A090862(A049084(a(n))) > 11 for n>4.

Extensions

Corrected by Zak Seidov, Feb 25 2004

A091923 Primes whose decimal representations interpreted in base 11 are not prime.

Original entry on oeis.org

11, 13, 17, 19, 23, 31, 37, 41, 47, 53, 59, 71, 73, 79, 83, 97, 101, 103, 107, 109, 113, 127, 131, 137, 149, 151, 157, 163, 167, 173, 179, 181, 191, 211, 223, 229, 233, 239, 241, 251, 257, 271, 277, 283, 293, 307, 311, 313, 317, 337, 347, 349, 359, 367, 383
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 13 2004

Keywords

Comments

A090862(A049084(a(n))) = 11.

Examples

			A000040(9)=23 in base 11 is 2*11^1 + 3*11^0 = 25 = 5^2, therefore 29 is a term.
		

Crossrefs

Cf. A091924.

Programs

  • Magma
    [n:n in PrimesUpTo(400)| not IsPrime(Seqint(Intseq(n), 11))]; // Marius A. Burtea, Jun 30 2019
    
  • Mathematica
    Select[Prime@Range@80, ! PrimeQ@FromDigits[IntegerDigits@#, 11] &] (* Vincenzo Librandi, Jul 01 2019 *)
  • PARI
    isok(p) = isprime(p) && (d=digits(p)) && !isprime(fromdigits(d, 11)); \\ Michel Marcus, Jun 30 2019

Extensions

Corrected by Zak Seidov, Feb 25 2004

A091922 Smallest m such that the decimal representation of the m-th prime interpreted in base n is not a prime, but prime in bases 10 <= b < n.

Original entry on oeis.org

5, 10, 19, 18, 3801, 6167, 251529, 128019, 13780180, 20576
Offset: 11

Views

Author

Reinhard Zumkeller, Feb 13 2004

Keywords

Comments

No more terms <= 3*10^10. - Michael S. Branicky, Apr 02 2025

Crossrefs

Cf. A090862.

Programs

  • Mathematica
    f[p_] := Module[{d = IntegerDigits[p], b = 11}, While[PrimeQ[FromDigits[d, b]], b++]; b]; a[n_] := Module[{p = 11, m = 5}, While[f[p] != n, p = NextPrime[p]; m++]; m]; Array[a, 8, 11] (* Amiram Eldar, Mar 28 2025 *)

Formula

A090862(a(n)) = n and A090862(m) <> n for m < a(n).

Extensions

a(17)-a(20) from Amiram Eldar, Mar 28 2025
Showing 1-3 of 3 results.