cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A112555 Triangle T, read by rows, such that the m-th matrix power satisfies T^m = I + m*(T - I) and consequently the matrix logarithm satisfies log(T) = T - I, where I is the identity matrix.

Original entry on oeis.org

1, 1, 1, -1, 0, 1, 1, 1, 1, 1, -1, -2, -2, 0, 1, 1, 3, 4, 2, 1, 1, -1, -4, -7, -6, -3, 0, 1, 1, 5, 11, 13, 9, 3, 1, 1, -1, -6, -16, -24, -22, -12, -4, 0, 1, 1, 7, 22, 40, 46, 34, 16, 4, 1, 1, -1, -8, -29, -62, -86, -80, -50, -20, -5, 0, 1, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 1, -1, -10, -46, -128, -239, -314, -296, -200, -95, -30, -6, 0
Offset: 0

Views

Author

Paul D. Hanna, Sep 21 2005

Keywords

Comments

Signed version of A108561. Row sums equal A084247. The n-th unsigned row sum = A001045(n) + 1 (Jacobsthal numbers). Central terms of even-indexed rows are a signed version of A072547. Sums of squared terms in rows yields A112556, which equals the first differences of the unsigned central terms.
Equals row reversal of triangle A112468 up to sign, where A112468 is the Riordan array (1/(1-x),x/(1+x)). - Paul D. Hanna, Jan 20 2006
The elements here match A108561 in absolute value, but the signs are crucial to the properties that the matrix A112555 exhibits; the main property being T^m = I + m*(T - I). This property is not satisfied by A108561. - Paul D. Hanna, Nov 10 2009
Eigensequence of the triangle = A140165. - Gary W. Adamson, Jan 30 2009
Triangle T(n,k), read by rows, given by [1,-2,0,0,0,0,0,0,0,...] DELTA [1,0,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 17 2009

Examples

			Triangle T begins:
   1;
   1,   1;
  -1,   0,   1;
   1,   1,   1,   1;
  -1,  -2,  -2,   0,   1;
   1,   3,   4,   2,   1,   1;
  -1,  -4,  -7,  -6,  -3,   0,   1;
   1,   5,  11,  13,   9,   3,   1,   1;
  -1,  -6, -16, -24, -22, -12,  -4,   0,   1;
   1,   7,  22,  40,  46,  34,  16,   4,   1,   1;
  -1,  -8, -29, -62, -86, -80, -50, -20,  -5,   0,   1;
  ...
Matrix log, log(T) = T - I, begins:
   0;
   1,  0;
  -1,  0,  0;
   1,  1,  1,  0;
  -1, -2, -2,  0,  0;
   1,  3,  4,  2,  1,  0;
  -1, -4, -7, -6, -3,  0,  0;
  ...
Matrix inverse, T^-1 = 2*I - T, begins:
   1;
  -1,  1;
   1,  0,  1;
  -1, -1, -1,  1;
   1,  2,  2,  0,  1;
  -1, -3, -4, -2, -1,  1;
  ...
where adjacent sums in row n of T^-1 gives row n+1 of T.
		

Crossrefs

From Philippe Deléham, Oct 07 2009: (Start)
Sum_{k=0..n} T(n, k)*x^(n-k) = A165760(n), A165759(n), A165758(n), A165755(n), A165752(n), A165746(n), A165751(n), A165747(n), A000007(n), A000012(n), A084247(n), A165553(n), A165622(n), A165625(n), A165638(n), A165639(n), A165748(n), A165749(n), A165750(n) for x= -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively.
Sum_{k=0..n} T(n, k)*x^k = A166157(n), A166153(n), A166152(n), A166149(n), A166036(n), A166035(n), A091004(n+1), A077925(n), A000007(n), A165326(n), A084247(n), A165405(n), A165458(n), A165470(n), A165491(n), A165505(n), A165506(n), A165510(n), A165511(n) for x = -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively. (End)

Programs

  • Mathematica
    Clear[t]; t[0, 0] = 1; t[n_, 0] = (-1)^(Mod[n, 2]+1); t[n_, n_] = 1; t[n_, k_] /; k == n-1 := t[n, k] = Mod[n, 2]; t[n_, k_] /; 0 < k < n-1 := t[n, k] = -t[n-1, k] - t[n-1, k-1]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff( polcoeff( (1+2*x+x*y)/((1-x*y)*(1+x+x*y)),n,X),k,Y)}
    for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    {T(n,k)=local(m=1,x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff(polcoeff(1/(1-x*y) + m*x/((1-x*y)*(1+x+x*y)),n,X),k,Y)}
    for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • Sage
    def A112555_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^(n-k+1)*prec(n+1, k) for k in (1..n+1)]
    for n in (0..12): print(A112555_row(n)) # Peter Luschny, Mar 16 2016

Formula

G.f.: 1/(1-x*y) + x/((1-x*y)*(1+x+x*y)).
The m-th matrix power T^m has the g.f.: 1/(1-x*y) + m*x/((1-x*y)*(1+x+x*y)).
Recurrence: T(n, k) = [T^-1](n-1, k) + [T^-1](n-1, k-1), where T^-1 is the matrix inverse of T.
From Peter Bala, Jun 23 2025: (Start)
T^z = exp(z*log(T)) = I + z*(T - I) for arbitrary complex z, where I is the identity array.
exp(T) = e*T. More generally, exp(z * T^u) = exp(z)*T^(u*z) = exp(z)*I + u*z*exp(z)*(T - I).
sin(z * T^u) = sin(z)*I + u*z*cos(z)*(T - I).
cos(z * T^u) = cos(z)*I - u*z*sin(z)*(T - I).
tan(z * T^u) = tan(z)*I + u*z*sec(z)^2*(T - I).
Chebyshev_T(n, T^u) = I + (n^2)*u*(T - I) and
Legendre_P(n, T^u) = I + (n*(n+1)/2)*u*(T - I).
More generally, for n >= 1,
Chebyshev_T(n, z*T^u) = Chebyshev_T(n, z)*I + n*u*z*Chebyshev_U(n-1, z)*(T - I) and
Legendre_P(n, z*T^u) = Legendre_P(n, z)*I + u*Q(n, z)*(T - I), where Q(1, z) = z and Q(n, z) = n*Legendre_P(n, z) + Q(n-1, z)/z for n > 1.
All the above properties may also hold for the triangle A279006. (End)

A166035 a(n) = (3^n+6*(-4)^n)/7.

Original entry on oeis.org

1, -3, 15, -51, 231, -843, 3615, -13731, 57111, -221883, 907215, -3569811, 14456391, -57294123, 230770815, -918300291, 3687550071, -14707153563, 58957754415, -235443597171, 942936650151, -3768259816203, 15083499618015
Offset: 0

Views

Author

Philippe Deléham, Oct 05 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-1, 12}, {1, -3}, 100] (* G. C. Greubel, Apr 24 2016 *)
  • PARI
    a(n)= (3^n+6*(-4)^n)/7;
    for(n=0,33,print1(a(n),", "));

Formula

a(n) = -a(n-1) + 12*a(n-2), a(0) = 1, a(1) = -3, for n>1.
a(n) = Sum_{0<=k<=n} A112555(n,k)*(-4)^k.
G.f.: (1-2x)/(1+x-12x^2).
E.g.f.: (1/7)*(exp(3*x) + 6*exp(-4*x)). - G. C. Greubel, Apr 24 2016

Extensions

a(5) corrected by Tilman Neumann, Dec 31 2010

A166036 a(n) = (4^n+8*(-5)^n)/9.

Original entry on oeis.org

1, -4, 24, -104, 584, -2664, 14344, -67624, 354504, -1706984, 8797064, -42936744, 218878024, -1077612904, 5455173384, -27007431464, 136110899144, -676259528424, 3398477511304, -16923668079784
Offset: 0

Views

Author

Philippe Deléham, Oct 05 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(4^n+8(-5)^n)/9,{n,0,30}] (* or *) LinearRecurrence[{-1,20},{1,-4},30] (* Harvey P. Dale, Mar 05 2016 *)
  • PARI
    vector(100, n, n--; (4^n+8*(-5)^n)/9) \\ Altug Alkan, Apr 24 2016

Formula

a(n) = -a(n-1) + 20*a(n-2), a(0) = 1, a(1) = -4, for n>1.
a(n) = Sum_{k=0..n} A112555(n,k)*(-5)^k.
G.f.: (1-3x)/(1+x-20x^2).
E.g.f.: (1/9)*(exp(4*x) + 8*exp(-5*x)). - G. C. Greubel, Apr 24 2016

A091003 Expansion of (1-3*x^2)/((1-2*x)*(1+3*x)).

Original entry on oeis.org

1, -1, 4, -10, 34, -94, 298, -862, 2650, -7822, 23722, -70654, 212986, -636910, 1914826, -5736286, 17225242, -51642958, 154994410, -464852158, 1394818618, -4183931566, 12552843274, -37656432670, 112973492314, -338912088334, 1016753042218
Offset: 0

Views

Author

Paul Barry, Dec 13 2003

Keywords

Comments

Inverse binomial transform of A091000.

Programs

  • GAP
    Concatenation([1], List([1..30], n -> (2^n + 4*(-3)^n)/10)); # G. C. Greubel, Feb 01 2019
  • Magma
    [1] cat [(2^n + 4*(-3)^n)/10: n in [1..30]]; // G. C. Greubel, Feb 01 2019
    
  • Mathematica
    CoefficientList[Series[(1-3x^2)/((1-2x)(1+3x)),{x,0,30}],x] (* Harvey P. Dale, Dec 23 2014 *)
    Join[{1}, LinearRecurrence[{-1,6}, {-1,4}, 30]] (* G. C. Greubel, Feb 01 2019 *)
  • PARI
    vector(30, n, n--; (2^n + 4*(-3)^n + 5*0^n)/10) \\ G. C. Greubel, Feb 01 2019
    
  • Sage
    [1] + [(2^n + 4*(-3)^n)/10 for n in (1..30)] # G. C. Greubel, Feb 01 2019
    

Formula

2^n = A091003(n) + 3*A091004(n) + 6*A091005(n).
a(n) = (2^n + 4*(-3)^n + 5*0^n)/10.
E.g.f.: (exp(2*x) + 4*exp(-3*x) + 5)/10. - G. C. Greubel, Feb 01 2019

A091005 Expansion of x^2/((1-2*x)*(1+3*x)).

Original entry on oeis.org

0, 0, 1, -1, 7, -13, 55, -133, 463, -1261, 4039, -11605, 35839, -105469, 320503, -953317, 2876335, -8596237, 25854247, -77431669, 232557151, -697147165, 2092490071, -6275373061, 18830313487, -56482551853, 169464432775, -508359743893, 1525146340543
Offset: 0

Views

Author

Paul Barry, Dec 13 2003

Keywords

Comments

Inverse binomial transform of A091002.

Crossrefs

Cf. A015441.

Programs

  • GAP
    Concatenation([0], List([1..30], n -> (3*2^n + 2*(-3)^n)/30)); # G. C. Greubel, Feb 01 2019
  • Magma
    [0] cat [(3*2^n + 2*(-3)^n)/30: n in [1..30]]; // G. C. Greubel, Feb 01 2019
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,4},{1,-2}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    Join[{0, 0}, LinearRecurrence[{-1, 6}, {1, -1}, 30]] (* G. C. Greubel, Feb 01 2019 *)
    CoefficientList[Series[x^2/((1-2x)(1+3x)),{x,0,30}],x] (* Harvey P. Dale, Apr 30 2022 *)
  • PARI
    vector(30, n, n--; (3*2^n + 2*(-3)^n - 5*0^n)/30) \\ G. C. Greubel, Feb 01 2019
    
  • Sage
    [0] + [(3*2^n + 2*(-3)^n)/30 for n in (1..30)] # G. C. Greubel, Feb 01 2019
    

Formula

2^n = A091003(n) + 3*A091004(n) + 6*a(n).
a(n) = (3*2^n + 2*(-3)^n - 5*0^n)/30.
E.g.f.: (3*exp(2*x) + 2*exp(-3*x) - 5)/30. - G. C. Greubel, Feb 01 2019
Showing 1-5 of 5 results.