cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A091011 Numbers having at least one divisor, d, such that for some x, d-x and d+x are also divisors.

Original entry on oeis.org

6, 12, 15, 18, 24, 28, 30, 36, 40, 42, 45, 48, 54, 56, 60, 66, 72, 75, 78, 80, 84, 90, 91, 96, 102, 105, 108, 112, 114, 120, 126, 132, 135, 138, 140, 144, 150, 153, 156, 160, 162, 165, 168, 174, 180, 182, 186, 190, 192, 195, 196, 198, 200, 204, 210, 216, 220
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 13 2003

Keywords

Comments

A091009(a(n)) > 0; complement of A091010.
Numbers k with at least one pair of divisors, (d1,d2), with d1 < d2, whose (integer) average divides k. - Wesley Ivan Hurt, Aug 23 2020

Crossrefs

Programs

  • Mathematica
    Table[If[Sum[Sum[(1 - Ceiling[(i + k)/2] + Floor[(i + k)/2]) (1 - Ceiling[2 n/(i + k)] + Floor[2 n/(i + k)]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}] > 0, n, {}], {n, 200}] // Flatten (* Wesley Ivan Hurt, Aug 23 2020 *)

A067131 Number of elements in the largest set of divisors of n which are in arithmetic progression.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 6, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 2
Offset: 1

Views

Author

Amarnath Murthy, Jan 09 2002

Keywords

Examples

			a(12) = 4 as the divisors of 12 are {1,2,3,4,6,12} and the maximal subset in arithmetic progression is {1,2,3,4}. a(15) = 3; the maximal set is {1,3,5}.
		

Crossrefs

Programs

  • Mathematica
    lap[s_] := Module[{}, l=Length[s]; If[l<2, Return[l]]; val=2; For[i=1, ival, val=k]]]; val]; lap/@Divisors/@Range[1, 200]
  • PARI
    A067131(n) = { my(d=divisors(n),m=1); for(i=1,(#d-1), for(j=(i+1),#d,my(c=1,k=d[j],s=(d[j]-d[i])); while(!(n%k), k+=s; c++); m = max(m,c))); (m); }; \\ Antti Karttunen, Sep 21 2018

Formula

a(n) = A061395(A319354(n)). - Antti Karttunen, Sep 21 2018

Extensions

Edited by Dean Hickerson, Jan 15 2002

A094518 Number of pairs (x,y) of divisors of n with x

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 5, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 12, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 11, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 0, 9, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 9, 0, 0, 0, 2, 0, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 06 2004

Keywords

Comments

a(A094519(n)) > 0, a(A094520(n)) = 0.
a(A097370(n)) = n and a(m) <> n for m < A097370(n).

Examples

			n=30 with divisor set {1,2,3,5,6,10,15,30}: a(30)=4, as 1<2 & 3=1+2, 1<5 & 6=1+5, 2<3 & 5=2+3 and 5<10 & 15=5+10.
		

Crossrefs

Cf. A091009.

Programs

A091010 Numbers having no divisor d such that also d-x and d+x are divisors for some x.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 92, 93, 94
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 13 2003

Keywords

Comments

A091009(a(n)) = 0; complement of A091011.

A091012 Numbers having exactly one divisor d such that for some x also d-x and d+x are divisors.

Original entry on oeis.org

6, 15, 28, 40, 91, 153, 190, 220, 325, 496, 544, 561, 572, 627, 703, 861, 897, 935, 946, 1012, 1225, 1287, 1292, 1431, 1581, 1610, 1653, 1768, 1891, 2278, 2300, 2465, 2618, 2701, 2967, 3321, 3344, 3496, 3596, 3655, 3952, 4123, 4301, 4324, 4371
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 13 2003

Keywords

Comments

A091009(a(n)) = 1.

Crossrefs

A091013 Numbers having more than one divisor d such that for some x also d-x and d+x are divisors.

Original entry on oeis.org

12, 18, 24, 30, 36, 42, 45, 48, 54, 56, 60, 66, 72, 75, 78, 80, 84, 90, 96, 102, 105, 108, 112, 114, 120, 126, 132, 135, 138, 140, 144, 150, 156, 160, 162, 165, 168, 174, 180, 182, 186, 192, 195, 196, 198, 200, 204, 210, 216, 222, 224, 225, 228, 231, 234, 240
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 13 2003

Keywords

Comments

A091009(a(n)) > 1.

Crossrefs

A319355 Filter sequence constructed from the lengths of arithmetic progressions occurring among the divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 5, 2, 6, 2, 5, 4, 7, 2, 8, 2, 9, 5, 5, 2, 10, 3, 5, 5, 11, 2, 12, 2, 9, 5, 5, 5, 13, 2, 5, 5, 14, 2, 15, 2, 9, 16, 5, 2, 17, 3, 9, 5, 9, 2, 18, 5, 15, 5, 5, 2, 19, 2, 5, 9, 20, 5, 18, 2, 9, 5, 21, 2, 22, 2, 5, 8, 9, 5, 15, 2, 23, 7, 5, 2, 24, 5, 5, 5, 21, 2, 25, 4, 9, 5, 5, 5, 26, 2, 9, 9, 27, 2, 15, 2, 21, 28
Offset: 1

Views

Author

Antti Karttunen, Sep 21 2018

Keywords

Comments

Restricted growth sequence transform of A319354.
For all i, j:
a(i) = a(j) => A067131(i) = A067131(j).
a(i) = a(j) => A160752(i) = A160752(j).
a(i) = a(j) => A091009(i) = A091009(j).

Crossrefs

Cf. A319354.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A319354(n) = if(1==n,2,my(d=divisors(n),m=1); for(i=1,(#d-1), for(j=(i+1),#d,my(c=1,k=d[j],s=(d[j]-d[i])); while(!(n%k), k+=s; c++); m *= prime(c))); (m));
    v319355 = rgs_transform(vector(up_to,n,A319354(n)));
    A319355(n) = v319355[n];

A091014 Smallest number having exactly n divisors d such that for some x also d-x and d+x are divisors.

Original entry on oeis.org

1, 6, 18, 12, 30, 24, 36, 48, 132, 84, 72, 60, 312, 264, 816, 144, 270, 168, 252, 300, 288, 120, 810, 432, 1224, 180, 1188, 1140, 792, 630, 1152, 240, 2112, 672, 4104, 504, 420, 600, 3672, 540, 1872, 480, 2592, 1584, 900, 5100, 360, 2760, 2040, 1890
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 13 2003

Keywords

Comments

A091009(a(n))=n and A091009(m)<>n for m<=a(n).

Examples

			a(9)=84: the exactly 9 triples of divisors of 84 with the defining property: (1,2,3), (2,3,4), (2,4,6), (1,4,7), (2,7,12), (3,12,21), (7,14,21), (14,21,28) and (14,28,42).
		

A360012 a(n) is the number of triples (u,v,w) of divisors of n with u/v = v/w, and u < v < w.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 2, 2, 0, 0, 0, 6, 0, 0, 0, 8, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 8, 1, 2, 0, 2, 0, 4, 0, 4, 0, 0, 0, 4, 0, 0, 2, 9, 0, 0, 0, 2, 0, 0, 0, 14, 0, 0, 2, 2, 0, 0, 0, 8, 4, 0, 0, 4, 0, 0, 0
Offset: 1

Views

Author

Rémy Sigrist, Jan 21 2023

Keywords

Comments

In other words, a(n) is the number of triples of distinct divisors of n in geometric progression.
This sequence is unbounded.

Examples

			The first terms, alongside the corresponding triples, are:
  n   a(n)  (u,v,w)'s
  --  ----  ------------------------------------
   1     0  None
   2     0  None
   3     0  None
   4     1  (1,2,4)
   5     0  None
   6     0  None
   7     0  None
   8     2  (1,2,4), (2,4,8)
   9     1  (1,3,9)
  10     0  None
  11     0  None
  12     2  (1,2,4), (3,6,12)
  13     0  None
  14     0  None
  15     0  None
  16     4  (1,2,4), (1,4,16), (2,4,8), (4,8,16)
		

Crossrefs

Programs

  • Mathematica
    Array[Count[Subsets[#, {3}], _?(#2 / #1 == #3 / #2 & @@ # &)] &@ Divisors@ # &, 87]
  • PARI
    a(n) = { my (d=divisors(n), v=0); for (i=1, #d-2, for (j=i+1, #d-1, for (k=j+1, #d, if (d[i]*d[k]==d[j]^2, v++)))); return (v) }

Formula

a(n) <= a(n*k) for any n, k > 0.
a(p^k) = A002620(k) for any k >= 0 and any prime number p.
a(s^2) = A005059(k) for any squarefree number s with k prime factors.
Showing 1-9 of 9 results.