A091009 Number of triples (u,v,w) of divisors of n with v-u = w-v, and u < v < w.
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 1, 0, 2, 0, 0, 3, 0, 0, 7, 0, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0, 11, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 10, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 9, 0, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
a(30)=4, as there are exactly 4 triples of divisors with the defining property: (1,2,3), (1,3,5), (2,6,10) and (5,10,15).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Cf. also A094518.
Programs
-
Mathematica
Array[Count[Subsets[#, {3}], ?(#2 - #1 == #3 - #2 & @@ # &)] &@ Divisors@ # &, 105] (* _Michael De Vlieger, Sep 10 2018 *)
-
PARI
A091009(n) = if(1==n,0,my(d=divisors(n),c=0); for(i=1,(#d-1),for(j=(i+1),#d,if(!(n%(d[j]+(d[j]-d[i]))),c++))); (c)); \\ Antti Karttunen, Sep 10 2018
Extensions
Definition clarified by Antti Karttunen, Sep 10 2018
Comments