A091030 Partial sums of powers of 13 (A001022).
1, 14, 183, 2380, 30941, 402234, 5229043, 67977560, 883708281, 11488207654, 149346699503, 1941507093540, 25239592216021, 328114698808274, 4265491084507563, 55451384098598320, 720867993281778161
Offset: 1
Examples
For n=6, a(6) = 1*6 + 12*15 + 144*20 + 1728*15 + 20736*6 + 248832*1 = 402234. - _Bruno Berselli_, Nov 12 2015
Links
- Delbert L. Johnson, Table of n, a(n) for n = 1..898
- Index entries for linear recurrences with constant coefficients, signature (14,-13).
Crossrefs
Programs
-
Maple
a:=n->sum(13^(n-j),j=1..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jan 04 2007
-
Mathematica
Table[13^n, {n, 0, 16}] // Accumulate (* Jean-François Alcover, Jul 05 2013 *) LinearRecurrence[{14,-13},{1,14},20] (* Harvey P. Dale, Jan 19 2024 *)
-
Maxima
A091030(n):=(13^n-1)/12$ makelist(A091030(n),n,1,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
a(n)=([0,1; -13,14]^(n-1)*[1;14])[1,1] \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[gaussian_binomial(n,1,13) for n in range(1,18)] # Zerinvary Lajos, May 28 2009
-
Sage
[(13^n-1)/12 for n in (1..30)] # Bruno Berselli, Nov 12 2015
Formula
G.f.: x/((1-13*x)*(1-x)) = (1/(1-13*x) - 1/(1-x))/12.
a(n) = Sum_{k=0..n-1} 13^k = (13^n-1)/12.
a(n) = 13*a(n-1)+1 for n>1, a(1)=1. - Vincenzo Librandi, Feb 05 2011
a(n) = Sum_{k=0...n-1} 12^k*binomial(n,n-1-k). - Bruno Berselli, Nov 12 2015
E.g.f.: exp(x)*(exp(12*x) - 1)/12. - Stefano Spezia, Mar 11 2023
Comments