cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091042 Triangle of even numbered entries of odd numbered rows of Pascal's triangle A007318.

Original entry on oeis.org

1, 1, 3, 1, 10, 5, 1, 21, 35, 7, 1, 36, 126, 84, 9, 1, 55, 330, 462, 165, 11, 1, 78, 715, 1716, 1287, 286, 13, 1, 105, 1365, 5005, 6435, 3003, 455, 15, 1, 136, 2380, 12376, 24310, 19448, 6188, 680, 17, 1, 171, 3876, 27132, 75582, 92378, 50388, 11628, 969, 19, 1, 210, 5985, 54264, 203490, 352716, 293930, 116280, 20349, 1330, 21
Offset: 0

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Comments

The row polynomials Pe(n, x) := Sum_{m=0..n} a(n, m)*x^m appear as numerators of the generating functions for the even numbered column sequences of array A034870.
Elements have the same parity as those of Pascal's triangle.
All zeros of polynomial Pe(n, x) are negative. They are -tan^2(Pi/2*n+1), -tan^2(2*Pi/2*n+1), ..., -tan^2(n*Pi/2*n+1). Moreover, for m >= 1, Pe(m, -x^2) is the characteristic polynomial of the linear difference equation with constant coefficients for differences between multiples of 2*m+1 with even and odd digit sum in base 2*m in the interval [0,(2*m)^n). - Vladimir Shevelev and Peter J. C. Moses, May 22 2012
Row reverse of A103327. - Peter Bala, Jul 29 2013
The row polynomial Pe(d, x), multiplied by (2*d)!/d! = A001813(d), gives the numerator polynomial of the o.g.f. of the sequence of the diagonal d, for d >= 0, of the Sheffer triangle Lah[4,1] given in A048854. - Wolfdieter Lang, Oct 12 2017

Examples

			Triangle a(n, m) begins:
n\m  0   1    2     3      4      5      6      7     8    9  10 ...
0:   1
1:   1   3
2:   1  10    5
3:   1  21   35     7
4:   1  36  126    84      9
5:   1  55  330   462    165     11
6:   1  78  715  1716   1287    286     13
7:   1 105 1365  5005   6435   3003    455     15
8:   1 136 2380 12376  24310  19448   6188    680    17
9:   1 171 3876 27132  75582  92378  50388  11628   969   19
10:  1 210 5985 54264 203490 352716 293930 116280 20349 1330  21
... reformatted and extended. - _Wolfdieter Lang_, Oct 12 2017
From _Peter Bala_, Jan 30 2022: (Start)
(1/2)*(N^2 + N) = Sum_{j = 1..N} j.
(1/2)*(N^2 + N)^3 = Sum_{j = 1..N} j^3 + 3*Sum_{j = 1..N} j^5.
(1/2)*(N^2 + N)^5 = Sum_{j = 1..N} j^5 + 10*Sum_{j = 1..N} j^7 + 5*Sum_{j = 1..N} j^9.
(1/2)*(N^2 + N)^7 = Sum_{j = 1..N} j^7 + 21*Sum_{j = 1..N} j^9 + 35*Sum_{j = 1..N} j^11 + 7*Sum_{j = 1..N} j^13. (End)
		

References

  • A. M. Yaglom and I. M. Yaglom, An elementary proof of the Wallis, Leibniz and Euler formulas for pi. Uspekhi Matem. Nauk, VIII (1953), 181-187(in Russian).

Crossrefs

Cf. A212500, A038754. A000302 (row sums), A085478, A103327 (row reverse), A048854, A103328.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(2*n+1, 2*k) ))); # G. C. Greubel, Aug 01 2019
    
  • Magma
    [[Binomial(2*n+1,2*k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Maple
    f := (x, t) -> cosh(sqrt(x)*t)*sinh(t); seq(seq(coeff(((2*n+1)!*coeff(series(f(x,t),t,2*n+2),t,2*n+1)),x,k),k=0..n),n=0..9); # Peter Luschny, Jul 29 2013
  • Mathematica
    T[n_, k_] /; 0 <= k <= n := T[n, k] = 2T[n-1, k] + 2T[n-1, k-1] + 2T[n-2, k-1] - T[n-2, k] - T[n-2, k-2]; T[0, 0] = T[1, 0] = 1; T[1, 1] = 3; T[, ] = 0;
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jul 29 2018, after Philippe Deléham *)
    Table[Binomial[2*n+1, 2*k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2019 *)
  • PARI
    T(n,k) = binomial(2*n+1, 2*k); \\ G. C. Greubel, Aug 01 2019
    
  • Python
    from math import comb, isqrt
    def A091042(n): return comb((r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))<<1|1,n-comb(r+1,2)<<1) # Chai Wah Wu, Apr 30 2025
  • Sage
    [[binomial(2*n+1, 2*k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

T(n, m) = binomial(2*n+1, 2*m) = A007318(2*n+1, 2*m), n >= m >= 0, otherwise 0.
From Peter Bala, Jul 29 2013: (Start)
E.g.f.: sinh(t)*cosh(sqrt(x)*t) = t + (1 + 3*x)*t^3/3! + (1 + 10*x + 5*x^2)*t^5/5! + (1 + 21*x + 35*x^2 + 7*x^3)*t^7/7! + ....
O.g.f.: A(x,t) = (1 + (x - 1)*t)/( (1 + (x - 1)*t)^2 - 4*t*x ) = 1 + (1 + 3*x)*t + (1 + 10*x + 5*x^2)*t^2 + ...
The function A( x/(x + 4), t*(x + 4)/4 ) = 1 + (1 + x)*t + (1 + 3*x + x^2)*t^2 + ... is the o.g.f. for A085478.
O.g.f. for n-th diagonal: ( Sum_{k = 0..n} binomial(2*n,2*k)*x^k )/(1 - x)^(2*n).
n-th row polynomial R(n,x) = (1/2)*( (1 + sqrt(x))^(2*n+1) - (sqrt(x) - 1)^(2*n+1) ).
Row sums A000302. (End)
T(n, k) = 2*T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-1) - T(n-2,k) - T(n-2,k-2) with T(0,0)=T(1,0)=1, T(1,1)=3, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 26 2013
From Peter Bala, Jan 31 2022: (Start)
Define S(r,N) = Sum_{j = 1..N} j^r. Then the following identity holds for n >= 0: (1/2)*(N^2 + N)^(2*n+1) = T(n,0)*S(2*n+1,N) + T(n,1)*S(2*n+3,N) + ... + T(n,n)* S(4*n+1,N). Some examples are given below. (End)