cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A002878 Bisection of Lucas sequence: a(n) = L(2*n+1).

Original entry on oeis.org

1, 4, 11, 29, 76, 199, 521, 1364, 3571, 9349, 24476, 64079, 167761, 439204, 1149851, 3010349, 7881196, 20633239, 54018521, 141422324, 370248451, 969323029, 2537720636, 6643838879, 17393796001, 45537549124, 119218851371, 312119004989, 817138163596, 2139295485799
Offset: 0

Views

Author

Keywords

Comments

In any generalized Fibonacci sequence {f(i)}, Sum_{i=0..4n+1} f(i) = a(n)*f(2n+2). - Lekraj Beedassy, Dec 31 2002
The continued fraction expansion for F((2n+1)*(k+1))/F((2n+1)*k), k>=1 is [a(n),a(n),...,a(n)] where there are exactly k elements (F(n) denotes the n-th Fibonacci number). E.g., continued fraction for F(12)/F(9) is [4, 4,4]. - Benoit Cloitre, Apr 10 2003
See A135064 for a possible connection with Galois groups of quintics.
Sequence of all positive integers k such that continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(5)). - Thomas Baruchel, Sep 15 2003
All positive integer solutions of Pell equation a(n)^2 - 5*b(n)^2 = -4 together with b(n)=A001519(n), n>=0.
a(n) = L(n,-3)*(-1)^n, where L is defined as in A108299; see also A001519 for L(n,+3).
Inverse binomial transform of A030191. - Philippe Deléham, Oct 04 2005
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
Let r = (2n+1), then a(n), n>0 = Product_{k=1..floor((r-1)/2)} (1 + sin^2 k*Pi/r); e.g., a(3) = 29 = (3.4450418679...)*(4.801937735...)*(1.753020396...). - Gary W. Adamson, Nov 26 2008
a(n+1) is the Hankel transform of A001700(n)+A001700(n+1). - Paul Barry, Apr 21 2009
a(n) is equal to the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(5)'s along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
Conjecture: for n > 0, a(n) = sqrt(Fibonacci(4*n+3) + Sum_{k=2..2*n} Fibonacci(2*k)). - Alex Ratushnyak, May 06 2012
Pisano period lengths: 1, 3, 4, 3, 2, 12, 8, 6, 12, 6, 5, 12, 14, 24, 4, 12, 18, 12, 9, 6, ... . - R. J. Mathar, Aug 10 2012
The continued fraction [a(n); a(n), a(n), ...] = phi^(2n+1), where phi is the golden ratio, A001622. - Thomas Ordowski, Jun 05 2013
Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy + 5. - Michel Lagneau, Feb 01 2014
Conjecture: except for the number 3, a(n) are the numbers such that a(n)^2+2 are Lucas numbers. - Michel Lagneau, Jul 22 2014
Comment on the preceding conjecture: It is clear that all a(n) satisfy a(n)^2 + 2 = L(2*(2*n+1)) due to the identity (17 c) of Vajda, p. 177: L(2*n) + 2*(-1)^n = L(n)^2 (take n -> 2*n+1). - Wolfdieter Lang, Oct 10 2014
Limit_{n->oo} a(n+1)/a(n) = phi^2 = phi + 1 = (3+sqrt(5))/2. - Derek Orr, Jun 18 2015
If d[k] denotes the sequence of k-th differences of this sequence, then d[0](0), d[1](1), d[2](2), d[3](3), ... = A048876, cf. message to SeqFan list by P. Curtz on March 2, 2016. - M. F. Hasler, Mar 03 2016
a(n-1) and a(n) are the least phi-antipalindromic numbers (A178482) with 2*n and 2*n+1 digits in base phi, respectively. - Amiram Eldar, Jul 07 2021
Triangulate (hyperbolic) 2-space such that around every vertex exactly 7 triangles touch. Call any 7 triangles having a common vertex the first layer and let the (n+1)-st layer be all triangles that do not appear in any of the first n layers and have a common vertex with the n-th layer. Then the n-th layer contains 7*a(n-1) triangles. E.g., the first layer (by definition) contains 7 triangles, the second layer (the "ring" of triangles around the first layer) consists of 28 triangles, the third layer (the next "ring") consists of 77 triangles, and so on. - Nicolas Nagel, Aug 13 2022

Examples

			G.f. = 1 + 4*x + 11*x^2 + 29*x^3 + 76*x^4 + 199*x^5 + 521*x^6 + ... - _Michael Somos_, Jan 13 2019
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Steven Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.

Crossrefs

Cf. A000204. a(n) = A060923(n, 0), a(n)^2 = A081071(n).
Cf. A005248 [L(2n) = bisection (even n) of Lucas sequence].
Cf. A001906 [F(2n) = bisection (even n) of Fibonacci sequence], A000045, A002315, A004146, A029907, A113224, A153387, A153416, A178482, A192425, A285992 (prime subsequence).
Cf. similar sequences of the type k*F(n)*F(n+1)+(-1)^n listed in A264080.

Programs

  • GAP
    List([0..40], n-> Lucas(1,-1,2*n+1)[2] ); # G. C. Greubel, Jul 15 2019
    
  • Haskell
    a002878 n = a002878_list !! n
    a002878_list = zipWith (+) (tail a001906_list) a001906_list
    -- Reinhard Zumkeller, Jan 11 2012
    
  • Magma
    [Lucas(2*n+1): n in [0..40]]; // Vincenzo Librandi, Apr 16 2011
    
  • Maple
    A002878 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,4]);
        else
            3*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    a[n_]:= FullSimplify[GoldenRatio^n - GoldenRatio^-n]; Table[a[n], {n, 1, 40, 2}]
    a[1]=1; a[2]=4; a[n_]:=a[n]= 3a[n-1] -a[n-2]; Array[a, 40]
    LinearRecurrence[{3, -1}, {1, 4}, 41] (* Jean-François Alcover, Sep 23 2017 *)
    Table[Sum[(-1)^Floor[k/2] Binomial[n -Floor[(k+1)/2], Floor[k/2]] 3^(n - k), {k, 0, n}], {n, 0, 40}] (* L. Edson Jeffery, Feb 26 2018 *)
    a[ n_] := Fibonacci[2n] + Fibonacci[2n+2]; (* Michael Somos, Jul 31 2018 *)
    a[ n_]:= LucasL[2n+1]; (* Michael Somos, Jan 13 2019 *)
  • PARI
    a(n)=fibonacci(2*n)+fibonacci(2*n+2) \\ Charles R Greathouse IV, Jun 16 2011
    
  • PARI
    for(n=1,40,q=((1+sqrt(5))/2)^(2*n-1);print1(contfrac(q)[1],", ")) \\ Derek Orr, Jun 18 2015
    
  • PARI
    Vec((1+x)/(1-3*x+x^2) + O(x^40)) \\ Altug Alkan, Oct 26 2015
    
  • Python
    a002878 = [1, 4]
    for n in range(30): a002878.append(3*a002878[-1] - a002878[-2])
    print(a002878) # Gennady Eremin, Feb 05 2022
  • Sage
    [lucas_number2(2*n+1,1,-1) for n in (0..40)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n+1) = 3*a(n) - a(n-1).
G.f.: (1+x)/(1-3*x+x^2). - Simon Plouffe in his 1992 dissertation
a(n) = S(2*n, sqrt(5)) = S(n, 3) + S(n-1, 3); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 3) = A001906(n+1) (even-indexed Fibonacci numbers).
a(n) ~ phi^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then (-1)^n*q(n, -1) = a(n). - Benoit Cloitre, Nov 10 2002
a(n) = A005248(n+1) - A005248(n) = -1 + Sum_{k=0..n} A005248(k). - Lekraj Beedassy, Dec 31 2002
a(n) = 2^(-n)*A082762(n) = 4^(-n)*Sum_{k>=0} binomial(2*n+1, 2*k)*5^k; see A091042. - Philippe Deléham, Mar 01 2004
a(n) = (-1)^n*Sum_{k=0..n} (-5)^k*binomial(n+k, n-k). - Benoit Cloitre, May 09 2004
From Paul Barry, May 27 2004: (Start)
Both bisection and binomial transform of A000204.
a(n) = Fibonacci(2n) + Fibonacci(2n+2). (End)
Sequence lists the numerators of sinh((2*n-1)*psi) where the denominators are 2; psi=log((1+sqrt(5))/2). Offset 1. a(3)=11. - Al Hakanson (hawkuu(AT)gmail.com), Mar 25 2009
a(n) = A001906(n) + A001906(n+1). - Reinhard Zumkeller, Jan 11 2012
a(n) = floor(phi^(2n+1)), where phi is the golden ratio, A001622. - Thomas Ordowski, Jun 10 2012
a(n) = A014217(2*n+1) = A014217(2*n+2) - A014217(2*n). - Paul Curtz, Jun 11 2013
Sum_{n >= 0} 1/(a(n) + 5/a(n)) = 1/2. Compare with A005248, A001906, A075796. - Peter Bala, Nov 29 2013
a(n) = lim_{m->infinity} Fibonacci(m)^(4n+1)*Fibonacci(m+2*n+1)/ Sum_{k=0..m} Fibonacci(k)^(4n+2). - Yalcin Aktar, Sep 02 2014
From Peter Bala, Mar 22 2015: (Start)
The aerated sequence (b(n))n>=1 = [1, 0, 4, 0, 11, 0, 29, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -1, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
b(n) = (1/2)*((-1)^n - 1)*F(n) + (1 + (-1)^(n-1))*F(n+1), where F(n) is a Fibonacci number. The o.g.f. is x*(1 + x^2)/(1 - 3*x^2 + x^4).
Exp( Sum_{n >= 1} 2*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 2*F(n)*x^n.
Exp( Sum_{n >= 1} (-2)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 2*F(n)*(-x)^n.
Exp( Sum_{n >= 1} 4*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 4*A029907(n)*x^n.
Exp( Sum_{n >= 1} (-4)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 4*A029907(n)*(-x)^n. Cf. A002315, A004146, A113224 and A192425. (End)
a(n) = sqrt(5*F(2*n+1)^2-4), where F(n) = A000045(n). - Derek Orr, Jun 18 2015
For n > 1, a(n) = 5*F(2*n-1) + L(2*n-3) with F(n) = A000045(n). - J. M. Bergot, Oct 25 2015
For n > 0, a(n) = L(n-1)*L(n+2) + 4*(-1)^n. - J. M. Bergot, Oct 25 2015
For n > 2, a(n) = a(n-2) + F(n+2)^2 + F(n-3)^2 = L(2*n-3) + F(n+2)^2 + F(n-3)^2. - J. M. Bergot, Feb 05 2016 and Feb 07 2016
E.g.f.: ((sqrt(5) - 5)*exp((3-sqrt(5))*x/2) + (5 + sqrt(5))*exp((3+sqrt(5))*x/2))/(2*sqrt(5)). - Ilya Gutkovskiy, Apr 24 2016
a(n) = Sum_{k=0..n} (-1)^floor(k/2)*binomial(n-floor((k+1)/2), floor(k/2))*3^(n-k). - L. Edson Jeffery, Feb 26 2018
a(n)*F(m+2n-1) = F(m+4n-2)-F(m), with Fibonacci number F(m), empirical observation. - Dan Weisz, Jul 30 2018
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Jul 31 2018
Sum_{n>=0} 1/a(n) = A153416. - Amiram Eldar, Nov 11 2020
a(n) = Product_{k=1..n} (1 + 4*sin(2*k*Pi/(2*n+1))^2). - Seiichi Manyama, Apr 30 2021
Sum_{n>=0} (-1)^n/a(n) = (1/sqrt(5)) * A153387 (Carlitz, 1967). - Amiram Eldar, Feb 05 2022
The continued fraction [a(n);a(n),a(n),...] = phi^(2*n+1), with phi = A001622. - A.H.M. Smeets, Feb 25 2022
a(n) = 2*sinh((2*n + 1)*arccsch(2)). - Peter Luschny, May 25 2022
This gives the sequence with 2 1's prepended: b(1)=b(2)=1 and, for k >= 3, b(k) = Sum_{j=1..k-2} (2^(k-j-1) - 1)*b(j). - Neal Gersh Tolunsky, Oct 28 2022 (formula due to Jon E. Schoenfield)
For n > 0, a(n) = 1 + 1/(Sum_{k>=1} F(k)/phi^(2*n*k + k)). - Diego Rattaggi, Nov 08 2023
From Peter Bala, Apr 16 2025: (Start)
a(3*n+1) = a(n)^3 + 3*a(n).
a(5*n+2) = a(n)^5 + 5*a(n)^3 + 5*a(n).
a(7*n+3) = a(n)^7 + 7*a(n)^5 + 14*a(n)^3 + 7*a(n).
For the coefficients see A034807.
The general result is: for k >= 0, a(k*n + (k-1)/2) = 2 * T(k, a(n)/2), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind and a(n) = ((1 + sqrt(5))/2)^(2*n+1) + ((1 - sqrt(5))/2)^(2*n+1).
Sum_{n >= 0} (-1)^n/a(n) = (1/4)* (theta_3(phi) - theta_3(phi^2)) = 0.815947983588122..., where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122) and phi = (sqrt(5) - 1)/2. See Borwein and Borwein, Exercise 3 a, p. 94 and Carlitz, 1967. (End)
From Peter Bala, May 15 2025: (Start)
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/5 (telescoping series: 5/(a(n) - 1/a(n)) = 1/A001906(n+1) + 1/A001906(n) ).
More generally, for k >= 1, Sum_{n >= 1} (-1)^(n+1)/(a(k*n) - s(k)/a(k*n)) = 1/(1 + a(k)) where s(k) = a(0) + a(1) + ... + a(k-1) = Lucas(2*k) - 2.
For k >= 1, Sum_{n >= 1} (-1)^(n+1)/(a(n) + L(2*k)^2/a(n)) = (1/5) * A064170(k+2).
Sum_{n >= 1} 1/(a(n) + 9/a(n)) = 3/10 (follows from 1/(a(n) + 9/a(n)) = L(2*n)/A081076(n) - L(2*n+2)/A081076(n+1) ).
More generally, it appears that for k >= 1, Sum_{n >= 1} 1/(a(n) + L(2*k)^2/a(n)) is rational.
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(5) [telescoping product: Product_{k = 1..n} ((a(k) + 1)/(a(k) - 1))^2 = 5*(1 - 4/A240926(n+1)) ]. (End)

Extensions

Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004

A001834 a(0) = 1, a(1) = 5, a(n) = 4*a(n-1) - a(n-2).

Original entry on oeis.org

1, 5, 19, 71, 265, 989, 3691, 13775, 51409, 191861, 716035, 2672279, 9973081, 37220045, 138907099, 518408351, 1934726305, 7220496869, 26947261171, 100568547815, 375326930089, 1400739172541, 5227629760075, 19509779867759, 72811489710961, 271736178976085
Offset: 0

Views

Author

Keywords

Comments

Sequence also gives values of x satisfying 3*y^2 - x^2 = 2, the corresponding y being given by A001835(n+1). Moreover, quadruples(p, q, r, s) satisfying p^2 + q^2 + r^2 = s^2, where p = q and r is either p+1 or p-1, are termed nearly isosceles Pythagorean and are given by p = {x + (-1)^n}/3, r = p-(-1)^n, s = y for n > 1. - Lekraj Beedassy, Jul 19 2002
a(n)= A002531(1+2*n). - Anton Vrba (antonvrba(AT)yahoo.com), Feb 14 2007
361 written in base A001835(n+1) - 1 is the square of a(n). E.g., a(12) = 2672279, A001835(13) - 1 = 1542840. We have 361_(1542840) = 3*1542840 + 6*1542840 + 1 = 2672279^2. - Richard Choulet, Oct 04 2007
The lower principal convergents to 3^(1/2), beginning with 1/1, 5/3, 19/11, 71/41, comprise a strictly increasing sequence; numerators=A001834, denominators=A001835. - Clark Kimberling, Aug 27 2008
General recurrence is a(n) = (a(1) - 1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x + 1)^n, k = (a(1) - 3), x = (1 + sqrt((a(1) + 1)/(a(1) - 3)))/2. Examples in OEIS: a(1) = 4 gives A002878, primes in it A121534. a(1) = 5 gives A001834, primes in it A086386. a(1) = 6 gives A030221, primes in it A299109. a(1) = 7 gives A002315, primes in it A088165. a(1) = 8 gives A033890, primes in it not in OEIS (do there exist any?). a(1) = 9 gives A057080, primes in {71, 34649, 16908641, ...}. a(1) = 10 gives A057081, primes in it {389806471, 192097408520951, ...}. - Ctibor O. Zizka, Sep 02 2008
Inverse binomial transform of A030192. - Philippe Deléham, Nov 19 2009
For positive n, a(n) equals the permanent of the (2*n) X (2*n) tridiagonal matrix with sqrt(6)'s along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
x-values in the solution to 3x^2 + 6 = y^2 (see A082841 for the y-values). - Sture Sjöstedt, Nov 25 2011
Pisano period lengths: 1, 1, 2, 4, 3, 2, 8, 4, 6, 3, 10, 4, 12, 8, 6, 8, 18, 6, 5, 12, ... - R. J. Mathar, Aug 10 2012
The aerated sequence (b(n))A100047%20for%20a%20connection%20with%20Chebyshev%20polynomials.%20-%20_Peter%20Bala">{n>=1} = [1, 0, 5, 0, 19, 0, 71, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -2, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for a connection with Chebyshev polynomials. - _Peter Bala, Mar 22 2015
Yong Hao Ng has shown that for any n, a(n) is coprime with any member of A001835 and with any member of A001075. - René Gy, Feb 26 2018
From Wolfdieter Lang, Oct 15 2020: (Start)
((-1)^n)*a(n) = X(n) = (-1)^n*(S(n, 4) + S(n-1, 4)) and Y(n) = X(n-1) gives all integer solutions (modulo sign flip between X and Y) of X^2 + Y^2 + 4*X*Y = +6, for n = -oo..+oo, with Chebyshev S polynomials (see A049310), with S(-1, x) = 0, and S(-|n|, x) = - S(|n|-2, x), for |n| >= 2.
This binary indefinite quadratic form of discriminant 12, representing 6, has only this family of proper solutions (modulo sign flip), and no improper ones.
This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)
Floretion Algebra Multiplication Program, FAMP Code: A001834 = (4/3)vesseq[ - .25'i + 1.25'j - .25'k - .25i' + 1.25j' - .25k' + 1.25'ii' + .25'jj' - .75'kk' + .75'ij' + .25'ik' + .75'ji' - .25'jk' + .25'ki' - .25'kj' + .25e], apart from initial term

Examples

			G.f. = 1 + 5*x + 19*x^2 + 71*x^3 + 265*x^4 + 989*x^5 + 3691*x^6 + ...
		

References

  • Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
  • Leonhard Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 375.
  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.

Crossrefs

A bisection of sequence A002531.
Cf. A001352, A001835, A086386 (prime members).
Cf. A026150.
a(n)^2+1 = A094347(n+1).

Programs

  • Haskell
    a001834 n = a001834_list !! (n-1)
    a001834_list = 1 : 5 : zipWith (-) (map (* 4) $ tail a001834_list) a001834_list
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Magma
    I:=[1,5]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
  • Maple
    f:=n->((1+sqrt(3))^(2*n+1)+(1-sqrt(3))^(2*n+1))/2^(n+1); # N. J. A. Sloane, Nov 10 2009
  • Mathematica
    a[0] = 1; a[1] = 5; a[n_] := a[n] = 4a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 25}] (* Robert G. Wilson v, Apr 24 2004 *)
    Table[Expand[((1+Sqrt[3])^(2*n+1)+(1+Sqrt[3])^(2*n+1))/2^(n+1)],{n, 0, 20}] (* Anton Vrba, Feb 14 2007 *)
    LinearRecurrence[{4, -1}, {1, 5}, 50] (* Sture Sjöstedt, Nov 27 2011 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Numerator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A002531 *)
    a[3, 20] (* Gerry Martens, Jun 07 2015 *)
    Round@Table[LucasL[2n+1, Sqrt[2]]/Sqrt[2], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    {a(n) = real( (2 + quadgen(12))^n * (1 + quadgen(12)) )}; /* Michael Somos, Sep 19 2008 */
    
  • PARI
    {a(n) = subst( polchebyshev(n-1, 2) + polchebyshev(n, 2), x, 2)}; /* Michael Somos, Sep 19 2008 */
    
  • SageMath
    [(lucas_number2(n,4,1)-lucas_number2(n-1,4,1))/2 for n in range(1, 27)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = ((1 + sqrt(3))^(2*n + 1) + (1 - sqrt(3))^(2*n + 1))/2^(n + 1). - N. J. A. Sloane, Nov 10 2009
a(n) = (1/2) * ((1 + sqrt(3))*(2 + sqrt(3))^n + (1 - sqrt(3))*(2 - sqrt(3))^n). - Dean Hickerson, Dec 01 2002
From Mario Catalani, Apr 11 2003: (Start)
With a = 2 + sqrt(3), b = 2 - sqrt(3): a(n) = (1/sqrt(2))(a^(n + 1/2) - b^(n + 1/2)).
a(n) - a(n-1) = A003500(n).
a(n) = sqrt(1 + 12*A061278(n) + 12*A061278(n)^2). (End)
a(n) = ((1 + sqrt(3))^(2*n + 1) + (1 - sqrt(3))^(2*n + 1))/2^(n + 1). - Anton Vrba, Feb 14 2007
G.f.: (1 + x)/((1 - 4*x + x^2)). Simon Plouffe in his 1992 dissertation.
a(n) = S(2*n, sqrt(6)) = S(n, 4) + S(n-1, 4); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 4) = A001353(n).
For all members x of the sequence, 3*x^2 + 6 is a square. Limit_{n->infinity} a(n)/a(n-1) = 2 + sqrt(3). - Gregory V. Richardson, Oct 10 2002
a(n) = 2*A001571(n) + 1. - Bruce Corrigan (scentman(AT)myfamily.com), Nov 04 2002
Let q(n, x) = Sum_{i=0..n} x^(n - i)*binomial(2*n - i, i); then (-1)^n*q(n, -6) = a(n). - Benoit Cloitre, Nov 10 2002
a(n) = 2^(-n)*Sum_{k>=0} binomial(2*n + 1, 2*k)*3^k; see A091042. - Philippe Deléham, Mar 01 2004
a(n) = floor(sqrt(3)*A001835(n+1)). - Philippe Deléham, Mar 03 2004
a(n+1) - 2*a(n) = 3*A001835(n+1). Using the known relation A001835(n+1) = sqrt((a(n)^2 + 2)/3) it follows that a(n+1) - 2*a(n) = sqrt(3*(a(n)^2 + 2)). Therefore a(n+1)^2 + a(n)^2 - 4*a(n+1)*a(n) - 6 = 0. - Creighton Dement, Apr 18 2005
a(n) = L(n,-4)*(-1)^n, where L is defined as in A108299; see also A001835 for L(n,+4). - Reinhard Zumkeller, Jun 01 2005
a(n) = Jacobi_P(n, 1/2, -1/2, 2)/Jacobi_P(n, -1/2, 1/2, 1). - Paul Barry, Feb 03 2006
Equals binomial transform of A026150 starting (1, 4, 10, 28, 76, ...) and double binomial transform of (1, 3, 3, 9, 9, 27, 27, 81, 81, ...). - Gary W. Adamson, Nov 30 2007
Sequence satisfies 6 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v. - Michael Somos, Sep 19 2008
a(-1-n) = -a(n). - Michael Somos, Sep 19 2008
From Franck Maminirina Ramaharo, Nov 11 2018: (Start)
a(n) = (-1)^n*(5*A125905(n) + A125905(n+1)).
E.g.f.: exp(2*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). (End)
a(n) = A061278(n+1) - A061278(n-1) for n>=2. - John P. McSorley, Jun 20 2020
From Peter Bala, May 09 2025: (Start)
a(n) = Dir(n, 2), where Dir(n, x) denotes the n-th row polynomial of the triangle A244419.
a(n) - 2*a(n-1) = 3 * A001835(n) for n >= 1.
For arbitrary x, a(n+x)^2 - 4*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 6 with a(n) := (1/2) * ((1 + sqrt(3))*(2 + sqrt(3))^n + (1 - sqrt(3))*(2 - sqrt(3))^n) as above. The particular case x = 0 is noted above,
a(n+1/2) = sqrt(6) * A001353(n+1).
a(n+3/4) + a(n+1/4) = sqrt(6*sqrt(6) + 12) * A001353(n+1).
a(n+3/4) - a(n+1/4) = sqrt(2*sqrt(6) - 4) * A001075(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/6 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A001352(n) + 1/A001352(n+1)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(3) (telescoping product: Product_{n = 1..k} ((a(n) + 1)/(a(n) - 1))^2 = 3*(1 - 2/A102206(k))). (End)

A085478 Triangle read by rows: T(n, k) = binomial(n + k, 2*k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 15, 7, 1, 1, 15, 35, 28, 9, 1, 1, 21, 70, 84, 45, 11, 1, 1, 28, 126, 210, 165, 66, 13, 1, 1, 36, 210, 462, 495, 286, 91, 15, 1, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 1, 55, 495, 1716, 3003, 3003, 1820, 680, 153, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 14 2003

Keywords

Comments

Coefficient array for Morgan-Voyce polynomial b(n,x). A053122 (unsigned) is the coefficient array for B(n,x). Reversal of A054142. - Paul Barry, Jan 19 2004
This triangle is formed from even-numbered rows of triangle A011973 read in reverse order. - Philippe Deléham, Feb 16 2004
T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k+1 peaks. T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k peaks at height >= 2. T(n,k) is the number of directed column-convex polyominoes of area n+1, having k+1 columns. - Emeric Deutsch, May 31 2004
Riordan array (1/(1-x), x/(1-x)^2). - Paul Barry, May 09 2005
The triangular matrix a(n,k) = (-1)^(n+k)*T(n,k) is the matrix inverse of A039599. - Philippe Deléham, May 26 2005
The n-th row gives absolute values of coefficients of reciprocal of g.f. of bottom-line of n-wave sequence. - Floor van Lamoen (fvlamoen(AT)planet.nl), Sep 24 2006
Unsigned version of A129818. - Philippe Deléham, Oct 25 2007
T(n, k) is also the number of idempotent order-preserving full transformations (of an n-chain) of height k >=1 (height(alpha) = |Im(alpha)|) and of waist n (waist(alpha) = max(Im(alpha))). - Abdullahi Umar, Oct 02 2008
A085478 is jointly generated with A078812 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x) = v(1,x) = 1; for n>1, u(n,x) = u(n-1,x)+x*v(n-1)x and v(n,x) = u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 25 2012
Per Kimberling's recursion relations, see A102426. - Tom Copeland, Jan 19 2016
Subtriangle of the triangle given by (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012
T(n,k) is also the number of compositions (ordered partitions) of 2*n+1 into 2*k+1 parts which are all odd. Proof: The o.g.f. of column k, x^k/(1-x)^(2*k+1) for k >= 0, is the o.g.f. of the odd-indexed members of the sequence with o.g.f. (x/(1-x^2))^(2*k+1) (bisection, odd part). Thus T(n,k) is obtained from the sum of the multinomial numbers A048996 for the partitions of 2*n+1 into 2*k+1 parts, all of which are odd. E.g., T(3,1) = 3 + 3 from the numbers for the partitions [1,1,5] and [1,3,3], namely 3!/(2!*1!) and 3!/(1!*2!), respectively. The number triangle with the number of these partitions as entries is A152157. - Wolfdieter Lang, Jul 09 2012
The matrix elements of the inverse are T^(-1)(n,k) = (-1)^(n+k)*A039599(n,k). - R. J. Mathar, Mar 12 2013
T(n,k) = A258993(n+1,k) for k = 0..n-1. - Reinhard Zumkeller, Jun 22 2015
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the algebraic function F(x)*G(x)^n about 0, where F(x) = (1 + sqrt(1 + 4*x))/(2*sqrt(1 + 4*x)) and G(x) = ((1 + sqrt(1 + 4*x))/2)^2. For example, for n = 4, (1 + sqrt(1 + 4*x))/(2*sqrt(1 + 4*x)) * ((1 + sqrt(1 + 4*x))/2)^8 = (x^4 + 10*x^3 + 15*x^2 + 7*x + 1) + O(x^5). - Peter Bala, Feb 23 2018
Row n also gives the coefficients of the characteristc polynomial of the tridiagonal n X n matrix M_n given in A332602: Phi(n, x) := Det(M_n - x*1_n) = Sum_{k=0..n} T(n, k)*(-x)^k, for n >= 0, with Phi(0, x) := 1. - Wolfdieter Lang, Mar 25 2020
It appears that the largest root of the n-th degree polynomial is equal to the sum of the distinct diagonals of a (2*n+1)-gon including the edge, 1. The largest root of x^3 - 6*x^2 + 5*x - 1 is 5.048917... = the sum of (1 + 1.80193... + 2.24697...). Alternatively, the largest root of the n-th degree polynomial is equal to the square of sigma(2*n+1). Check: 5.048917... is the square of sigma(7), 2.24697.... Given N = 2*n+1, sigma(N) (N odd) can be defined as 1/(2*sin(Pi/(2*N))). Relating to the 9-gon, the largest root of x^4 - 10*x^3 + 15*x^2 - 7*x + 1 is 8.290859..., = the sum of (1 + 1.879385... + 2.532088... + 2.879385...), and is the square of sigma(9), 2.879385... Refer to A231187 for a further clarification of sigma(7). - Gary W. Adamson, Jun 28 2022
For n >=1, the n-th row is given by the coefficients of the minimal polynomial of -4*sin(Pi/(4*n + 2))^2. - Eric W. Weisstein, Jul 12 2023
Denoting this lower triangular array by L, then L * diag(binomial(2*k,k)^2) * transpose(L) is the LDU factorization of A143007, the square array of crystal ball sequences for the A_n X A_n lattices. - Peter Bala, Feb 06 2024
T(n, k) is the number of occurrences of the periodic substring (01)^k in the periodic string (01)^n (see Proposition 4.7 at page 7 in Fang). - Stefano Spezia, Jun 09 2024

Examples

			Triangle begins as:
  1;
  1    1;
  1    3    1;
  1    6    5    1;
  1   10   15    7    1;
  1   15   35   28    9    1;
  1   21   70   84   45   11    1;
  1   28  126  210  165   66   13    1;
  1   36  210  462  495  286   91   15    1;
  1   45  330  924 1287 1001  455  120   17    1;
  1   55  495 1716 3003 3003 1820  680  153   19    1;
...
From _Philippe Deléham_, Mar 26 2012: (Start)
(0, 1, 0, 1, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, ...) begins:
  1
  0, 1
  0, 1,  1
  0, 1,  3,   1
  0, 1,  6,   5,   1
  0, 1, 10,  15,   7,   1
  0, 1, 15,  35,  28,   9,  1
  0, 1, 21,  70,  84,  45, 11,  1
  0, 1, 28, 126, 210, 165, 66, 13, 1. (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n+k, 2*k) ))); # G. C. Greubel, Aug 01 2019
  • Haskell
    a085478 n k = a085478_tabl !! n !! k
    a085478_row n = a085478_tabl !! n
    a085478_tabl = zipWith (zipWith a007318) a051162_tabl a025581_tabl
    -- Reinhard Zumkeller, Jun 22 2015
    
  • Magma
    [Binomial(n+k, 2*k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Maple
    T := (n,k) -> binomial(n+k,2*k): seq(seq(T(n,k), k=0..n), n=0..11);
  • Mathematica
    (* First program *)
    u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A085478 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A078812 *) (*Clark Kimberling, Feb 25 2012 *)
    (* Second program *)
    Table[Binomial[n + k, 2 k], {n, 0, 12}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 01 2019 *)
    CoefficientList[Table[Fibonacci[2 n + 1, Sqrt[x]], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Jul 03 2023 *)
    Join[{{1}}, CoefficientList[Table[MinimalPolynomial[-4 Sin[Pi/(4 n + 2)]^2, x], {n, 20}], x]] (* Eric W. Weisstein, Jul 12 2023 *)
  • PARI
    T(n,k) = binomial(n+k,n-k)
    
  • Sage
    [[binomial(n+k,2*k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

T(n, k) = (n+k)!/((n-k)!*(2*k)!).
G.f.: (1-z)/((1-z)^2-tz). - Emeric Deutsch, May 31 2004
Row sums are A001519 (Fibonacci(2n+1)). Diagonal sums are A011782. Binomial transform of A026729 (product of lower triangular matrices). - Paul Barry, Jun 21 2004
T(n, 0) = 1, T(n, k) = 0 if n=0} T(n-1-j, k-1)*(j+1). T(0, 0) = 1, T(0, k) = 0 if k>0; T(n, k) = T(n-1, k-1) + T(n-1, k) + Sum_{j>=0} (-1)^j*T(n-1, k+j)*A000108(j). For the column k, g.f.: Sum_{n>=0} T(n, k)*x^n = (x^k) / (1-x)^(2*k+1). - Philippe Deléham, Feb 15 2004
Sum_{k=0..n} T(n,k)*x^(2*k) = A000012(n), A001519(n+1), A001653(n), A078922(n+1), A007805(n), A097835(n), A097315(n), A097838(n), A078988(n), A097841(n), A097727(n), A097843(n), A097730(n), A098244(n), A097733(n), A098247(n), A097736(n), A098250(n), A097739(n), A098253(n), A097742(n), A098256(n), A097767(n), A098259(n), A097770(n), A098262(n), A097773(n), A098292(n), A097776(n) for x=0,1,2,...,27,28 respectively. - Philippe Deléham, Dec 31 2007
T(2*n,n) = A005809(n). - Philippe Deléham, Sep 17 2009
A183160(n) = Sum_{k=0..n} T(n,k)*T(n,n-k). - Paul D. Hanna, Dec 27 2010
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Feb 06 2012
O.g.f. for column k: x^k/(1-x)^(2*k+1), k >= 0. [See the o.g.f. of the triangle above, and a comment on compositions. - Wolfdieter Lang, Jul 09 2012]
E.g.f.: (2/sqrt(x + 4))*sinh((1/2)*t*sqrt(x + 4))*cosh((1/2)*t*sqrt(x)) = t + (1 + x)*t^3/3! + (1 + 3*x + x^2)*t^5/5! + (1 + 6*x + 5*x^2 + x^3)*t^7/7! + .... Cf. A091042. - Peter Bala, Jul 29 2013
T(n, k) = A065941(n+3*k, 4*k) = A108299(n+3*k, 4*k) = A194005(n+3*k, 4*k). - Johannes W. Meijer, Sep 05 2013
Sum_{k=0..n} (-1)^k*T(n,k)*A000108(k) = A000007(n) for n >= 0. - Werner Schulte, Jul 12 2017
Sum_{k=0..floor(n/2)} T(n-k,k)*A000108(k) = A001006(n) for n >= 0. - Werner Schulte, Jul 12 2017
From Peter Bala, Jun 26 2025: (Start)
The n-th row polynomial b(n, x) = (-1)^n * U(2*n, (i/2)*sqrt(x)), where U(n,x) is the n-th Chebyshev polynomial of the second kind.
b(n, x) = (-1)^n * Dir(n, -1 - x/2), where Dir(n, x) is the n-th row polynomial of the triangle A244419.
b(n, -1 - x) is the n-th row polynomial of A098493. (End)

A086645 Triangle read by rows: T(n, k) = binomial(2n, 2k).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 28, 70, 28, 1, 1, 45, 210, 210, 45, 1, 1, 66, 495, 924, 495, 66, 1, 1, 91, 1001, 3003, 3003, 1001, 91, 1, 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1, 1, 153, 3060, 18564, 43758, 43758, 18564, 3060, 153, 1, 1, 190, 4845, 38760
Offset: 0

Views

Author

Philippe Deléham, Jul 26 2003

Keywords

Comments

Terms have the same parity as those of Pascal's triangle.
Coefficients of polynomials (1/2)*((1 + x^(1/2))^(2n) + (1 - x^(1/2))^(2n)).
Number of compositions of 2n having k parts greater than 1; example: T(3, 2) = 15 because we have 4+2, 2+4, 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2, 3+3. - Philippe Deléham, May 18 2005
Number of binary words of length 2n - 1 having k runs of consecutive 1's; example: T(3,2) = 15 because we have 00101, 01001, 01010, 01011, 01101, 10001, 10010, 10011, 10100, 10110, 10111, 11001, 11010, 11011, 11101. - Philippe Deléham, May 18 2005
Let M_n be the n X n matrix M_n(i, j) = T(i, j-1); then for n > 0, det(M_n) = A000364(n), Euler numbers; example: det([1, 1, 0, 0; 1, 6, 1, 0; 1, 15, 15, 1; 1, 28, 70, 28 ]) = 1385 = A000364(4). - Philippe Deléham, Sep 04 2005
Equals ConvOffsStoT transform of the hexagonal numbers, A000384: (1, 6, 15, 28, 45, ...); e.g., ConvOffs transform of (1, 6, 15, 28) = (1, 28, 70, 28, 1). - Gary W. Adamson, Apr 22 2008
From Peter Bala, Oct 23 2008: (Start)
Let C_n be the root lattice generated as a monoid by {+-2*e_i: 1 <= i <= n; +-e_i +- e_j: 1 <= i not equal to j <= n}. Let P(C_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(C_n) [Ardila et al.]. See A127674 for (a signed version of) the corresponding array of f-vectors for these type C_n polytopes. See A008459 for the array of h-vectors for type A_n polytopes and A108558 for the array of h-vectors associated with type D_n polytopes.
The Hilbert transform of this triangle is A142992 (see A145905 for the definition of this term).
(End)
Diagonal sums: A108479. - Philippe Deléham, Sep 08 2009
Coefficients of Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
Generalized Narayana triangle for 4^n (or cosh(2x)). - Paul Barry, Sep 28 2010
Coefficients of the matrix inverse appear to be T^(-1)(n,k) = (-1)^(n+k)*A086646(n,k). - R. J. Mathar, Mar 12 2013
Let E(y) = Sum_{n>=0} y^n/(2*n)! = cosh(sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence (2*n)! as defined in Wang and Wang. Cf. A103327. - Peter Bala, Aug 06 2013
Row 6, (1,66,495,924,495,66,1), plays a role in expansions of powers of the Dedekind eta function. See the Chan link, p. 534, and A034839. - Tom Copeland, Dec 12 2016

Examples

			From _Peter Bala_, Oct 23 2008: (Start)
The triangle begins
n\k|..0.....1.....2.....3.....4.....5.....6
===========================================
0..|..1
1..|..1.....1
2..|..1.....6.....1
3..|..1....15....15.....1
4..|..1....28....70....28.....1
5..|..1....45...210...210....45.....1
6..|..1....66...495...924...495....66.....1
...
(End)
From _Peter Bala_, Aug 06 2013: (Start)
Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n)! the column generating functions begin
1st col: cosh(sqrt(y)) = 1 + y/2! + y^2/4! + y^3/6! + y^4/8! + ....
2nd col: 1/2!*y*cosh(sqrt(y)) = y/2! + 6*y^2/4! + 15*y^3/6! + 28*y^4/8! + ....
3rd col: 1/4!*y^2*cosh(sqrt(y)) = y^2/4! + 15*y^3/6! + 70*y^4/8! + 210*y^5/10! + .... (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.

Crossrefs

Cf. A008459, A108558, A127674, A142992. - Peter Bala, Oct 23 2008
Cf. A103327 (binomial(2n+1, 2k+1)), A103328 (binomial(2n, 2k+1)), A091042 (binomial(2n+1, 2k)). -Wolfdieter Lang, Jan 06 2013
Cf. A086646 (unsigned matrix inverse), A103327.
Cf. A034839.

Programs

  • Magma
    /* As triangle: */ [[Binomial(2*n, 2*k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 14 2016
  • Maple
    A086645:=(n,k)->binomial(2*n,2*k): seq(seq(A086645(n,k),k=0..n),n=0..12);
  • Mathematica
    Table[Binomial[2 n, 2 k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 13 2016 *)
  • Maxima
    create_list(binomial(2*n,2*k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    {T(n, k) = binomial(2*n, 2*k)};
    
  • PARI
    {T(n, k) = sum( i=0, min(k, n-k), 4^i * binomial(n, 2*i) * binomial(n - 2*i, k-i))}; /* Michael Somos, May 26 2005 */
    

Formula

T(n, k) = (2*n)!/((2*(n-k))!*(2*k)!) row sums = A081294. COLUMNS: A000012, A000384
Sum_{k>=0} T(n, k)*A000364(k) = A000795(n) = (2^n)*A005647(n).
Sum_{k>=0} T(n, k)*2^k = A001541(n). Sum_{k>=0} T(n, k)*3^k = 2^n*A001075(n). Sum_{k>=0} T(n, k)*4^k = A083884(n). - Philippe Deléham, Feb 29 2004
O.g.f.: (1 - z*(1+x))/(x^2*z^2 - 2*x*z*(1+z) + (1-z)^2) = 1 + (1 + x)*z +(1 + 6*x + x^2)*z^2 + ... . - Peter Bala, Oct 23 2008
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A081294(n), A001541(n), A090965(n), A083884(n), A099140(n), A099141(n), A099142(n), A165224(n), A026244(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 08 2009
Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
From Paul Barry, Sep 28 2010: (Start)
G.f.: 1/(1-x-x*y-4*x^2*y/(1-x-x*y)) = (1-x*(1+y))/(1-2*x*(1+y)+x^2*(1-y)^2);
E.g.f.: exp((1+y)*x)*cosh(2*sqrt(y)*x);
T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2*(k-j))*4^(k-j). (End)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-1) - T(n-2,k) - T(n-2,k-2), with T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 26 2013
From Peter Bala, Sep 22 2021: (Start)
n-th row polynomial R(n,x) = (1-x)^n*T(n,(1+x)/(1-x)), where T(n,x) is the n-th Chebyshev polynomial of the first kind. Cf. A008459.
R(n,x) = Sum_{k = 0..n} binomial(n,2*k)*(4*x)^k*(1 + x)^(n-2*k).
R(n,x) = n*Sum_{k = 0..n} (n+k-1)!/((n-k)!*(2*k)!)*(4*x)^k*(1-x)^(n-k) for n >= 1. (End)

A048854 Triangle read by rows. A generalization of unsigned Lah numbers, called L[4,1].

Original entry on oeis.org

1, 2, 1, 12, 12, 1, 120, 180, 30, 1, 1680, 3360, 840, 56, 1, 30240, 75600, 25200, 2520, 90, 1, 665280, 1995840, 831600, 110880, 5940, 132, 1, 17297280, 60540480, 30270240, 5045040, 360360, 12012, 182, 1, 518918400, 2075673600, 1210809600, 242161920, 21621600, 960960, 21840, 240, 1, 17643225600, 79394515200, 52929676800, 12350257920, 1323241920, 73513440, 2227680, 36720, 306, 1
Offset: 0

Views

Author

Keywords

Comments

s(n,x) := Sum_{m=0..n} T(n,m)*x^m are monic polynomials satisfying s(n,x+y) = Sum_{k=0..n} binomial(n,k)*s(k,x)*p(n-k,y), with polynomials p(n,x) = Sum_{m=1..n} A048786(n,m)*x^m (row polynomials of triangle A048786) and p(0,x)=1.
In the umbral calculus (see the Roman reference, p. 21) the s(n,x) are called Sheffer polynomials for(1/sqrt(1+4*t),t/(1+4*t)). Here the Sheffer notation differs. See the W. Lang link under A006232.
For the general L[d,a] triangles see A286724, also for references.
This is the generalized signless Lah number triangle L[4,1], the Sheffer triangle ((1 - 4*t)^(-1/2), t/(1 - 4*t)). It is defined as transition matrix
risefac[4,1](x, n) = Sum_{m=0..n} L[4,1](n, m)*fallfac[4,1](x, m), where risefac[4,1](x, n) := Product_{0..n-1} (x + (1 + 4*j)) for n >= 1 and risefac[4,1](x, 0) := 1, and fallfac[4,1](x, n) := Product_{0..n-1} (x - (1 + 4*j)) for n >= 1 and fallfac[4,1](x, 0) := 1.
In matrix notation: L[4,1] = S1phat[4,1]*S2hat[4,1] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations A290319 and A111578 (but here with offsets 0), respectively.
The a- and z-sequences for this Sheffer matrix have e.g.f.s Ea(t) = 1 + 4*t and Ez(t) = (1 + 4*t)*(1 - (1 + 4*t)^(-1/2))/t, respectively. That is, a = {1, 4, repeat(0)} and z(n) = 2*A292220(n). See the W. Lang link on a- and z-sequences there.
The inverse matrix T^(-1) = L^(-1)[4,1] is Sheffer ((1 + 4*t)^(-1/2), t/(1 + 4*t)). This means that T^(-1)(n, m) = (-1)^(n-m)*T(n, m).
fallfac[4,1](x, n) = Sum_{m=0..n} (-1)^(n-m)*T(n, m)*risefac[4,1](x, m), n >= 0.
Diagonal sequences have o.g.f. G(d, x) = A001813(d)*Sum_{m=0..d} A091042(d, m)*x^m/(1 - x)^{2*d + 1}, for d >= 0 (d=0 main diagonal). G(d, x) generates {A001813(d)*binomial(2*(n + d),2*d)}{n >= 0}. See the second W. Lang link on how to compute o.g.f.s of diagonal sequences of general Sheffer triangles. - _Wolfdieter Lang, Oct 12 2017

Examples

			The triangle T(n, m) begins:
n\m         0          1          2         3        4      5     6   7 8  ...
0:          1
1:          2          1
2:         12         12          1
3:        120        180         30         1
4:       1680       3360        840        56        1
5:      30240      75600      25200      2520       90      1
6:     665280    1995840     831600    110880     5940    132     1
7:   17297280   60540480   30270240   5045040   360360  12012   182   1
8:  518918400 2075673600 1210809600 242161920 21621600 960960 21840 240 1
...
n = 9: 17643225600 79394515200 52929676800 12350257920 1323241920 73513440 2227680 36720 306 1,
n = 10: 670442572800 3352212864000 2514159648000 670442572800 83805321600 5587021440 211629600 4651200 58140 380 1.
...
Recurrence from a-sequence: T(4, 2) = 2*T(3, 1) + 4*4*T(3, 2) = 2*180 + 16*30 = 840.
Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2)+ z(3)*T(3, 3)) = 4*(2*120 + 2*180 - 8*30 + 60*1) = 1680.
Four term recurrence: T(4, 2) = T(3, 1) + 2*13*T(3, 2) - 8*3*5*T(2, 2) =  180 + 26*30 - 120*1 = 840.
Meixner type identity for n = 2: (D_x - 4*(D_x)^2)*(12 + 12*x + 1*x^2) = (12 + 2*x) - 4*2 = 2*(2 + x).
Sheffer recurrence for R(3, x): [(2 + x) + 8*(1 + x)*D_x + 16*x*(D_x)^2] (12 + 12*x + 1*x^2) = (2 + x)*(12 + 12*x + x^2) + 8*(1 + x)*(12 + 2*x) + 16*2*x = 120 + 180*x + 30*x^2 + x^3 = R(3, x).
Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (4!*10/2)*(1*30/3! + 4*1/2!) = 840.
Diagonal sequence d = 2: {12, 180, 840 ...} has o.g.f. 12*(1 + 10*x + 5*x^2)/(1 - x)^5  (see A001813(2) and row n=2 of A091042) generating
{12*binomial(2*(n + 2), 4)}_{n >= 0}. - _Wolfdieter Lang_, Oct 12 2017
		

References

  • S. Roman, The Umbral Calculus, Academic Press, New York, 1984.

Crossrefs

Related to triangle A046521. Cf. A048786. a(n, 0) = A001813.
A111578, A271703 L[1,0], A286724 L[2,1], A290319, A290596 L[3,1], A290597 L[3,2], A292220.
The diagonal sequences are: A000012, 2*A000384(n+1), 12*A053134, 120*A053135, 1680*A053137, ... - Wolfdieter Lang, Oct 12 2017

Programs

  • Maple
    A290604_row := proc(n) exp(x*t/(1-4*t))/sqrt(1-4*t): series(%, t, n+2): seq(n!*coeff(coeff(%,t,n),x,j), j=0..n) end: seq(A290604_row(n), n=0..9); # Peter Luschny, Sep 23 2017
  • Mathematica
    T[n_, m_] := n!/m! * Binomial[2*n, n] * Binomial[n, m] / Binomial[2*m, m]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *)
    T[0, 0] = 1; T[-1, ] = T[, -1] = 0; T[n_, m_] /; n < m = 0; T[n_, m_] := T[n, m] = T[n-1, m-1] + 2*(4*n-3)*T[n-1, m] - 8*(n-1)*(2*n-3)*T[n-2, m]; Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Sep 23 2017 *)

Formula

T(n, m) = (n!/m!)*A046521(n, m) = (n!/m!)* binomial(2*n, n)*binomial(n, m)/binomial(2*m, m), n >= m >= 0, a(n, m) := 0, n < m.
Sum_{n>=0, k>=0} T(n, k)*x^n*y^k/(2*n)! = exp(x)*cosh(sqrt(x*y)). - Vladeta Jovovic, Feb 21 2003
T(n, m) = L[4,1](n,m) = Sum_{k=m..n} A290319(n, k)*A111578(k+1, m+1), 0 <= m <= n.
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 4*t)^(-1/2)*exp(x*t/(1 - 4*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 4*t)^(-1/2)*(t/(1 - 4*t))^m/m!, m >= 0.
Three term recurrence for column entries m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 4*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0..n-1} z(j)*T(n-1, j), n >= 1, T(0, 0) = 0, from the a-sequence {1, 4 repeat(0)} and the z(j) = 2*A292220(j) (see above).
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(4*n - 3)*T(n-1, m) - 8*(n-1)*(2*n - 3)*T(n-2, m), n >= m >= 0, with T(0, 0) =1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 4*D_x)) * R(n, x) = n * R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-4)^k*(D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(2 + x)*1 + 8*(1 + x)*D_x + 16*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (n!/(n-m))*(2 + 4*m)*Sum_{p=0..n-1-m} 4^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.
Explicit form (from the o.g.f.s of diagonal sequences): ((2*(n-m))!/(n-m)!)*binomial(2*n,2*(n-m)), n >= m >= 0, and vanishing for n < m. - Wolfdieter Lang, Oct 12 2017

Extensions

Name changed, after merging my newer duplicate, from Wolfdieter Lang, Oct 10 2017

A034870 Even-numbered rows of Pascal's triangle.

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 6, 15, 20, 15, 6, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 1, 14, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91, 14, 1
Offset: 0

Views

Author

Keywords

Comments

The sequence of row lengths of this array is [1,3,5,7,9,11,13,...]= A005408(n), n>=0.
Equals X^n * [1,0,0,0,...] where X = an infinite tridiagonal matrix with (1,1,1,...) in the main and subsubdiagonal and (2,2,2,...) in the main diagonal. X also = a triangular matrix with (1,2,1,0,0,0,...) in each column. - Gary W. Adamson, May 26 2008
a(n,m) has the following interesting combinatoric interpretation. Let s(n,m) equal the set of all base-4, n-digit numbers with n-m more 1-digits than 2-digits. For example s(2,1) = {10,01,13,31} (note that numbers like 1 are left-padded with 0's to ensure that they have 2 digits). Notice that #s(2,1) = a(2,1) with # indicating cardinality. This is true in general. a(n,m)=#s(n,m). In words, a(n,m) gives the number of n-digit, base-4 numbers with n-m more 1 digits than 2 digits. A proof is provided in the Links section. - Russell Jay Hendel, Jun 23 2015

Examples

			Triangle begins:
  1;
  1,  2,  1;
  1,  4,  6,   4,   1;
  1,  6, 15,  20,  15,   6,   1;
  1,  8, 28,  56,  70,  56,  28,   8,   1;
  1, 10, 45, 120, 210, 252, 210, 120,  45,  10,  1;
  1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1;
		

Crossrefs

Cf. A000302 (row sums, powers of 4), alternating row sums are 0, except for n=0 which gives 1.

Programs

  • Haskell
    a034870 n k = a034870_tabf !! n !! k
    a034870_row n = a034870_tabf !! n
    a034870_tabf = map a007318_row [0, 2 ..]
    -- Reinhard Zumkeller, Apr 19 2012, Apr 02 2011
    
  • Magma
    /* As triangle: */ [[Binomial(n,k): k in [0..n]]: n in [0.. 15 by 2]]; // Vincenzo Librandi, Jul 16 2015
    
  • Maple
    T := (n,k) -> simplify(GegenbauerC(`if`(kPeter Luschny, May 08 2016
  • Mathematica
    Flatten[Table[Binomial[n,k],{n,0,20,2},{k,0,n}]] (* Harvey P. Dale, Dec 15 2014 *)
  • Maxima
    taylor(1/(1-x*(y+1)^2),x,0,10,y,0,10); /* Vladimir Kruchinin, Nov 22 2020 */
    
  • Sage
    flatten([[binomial(2*n, k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022

Formula

T(n, m) = binomial(2*n, m), 0<= m <= 2*n, 0<=n, else 0.
G.f. for column m=2*k sequence: (x^k)*Pe(k, x)/(1-x)^(2*k+1), k>=0; for column m=2*k-1 sequence (x^k)*Po(k, x)/(1-x)^(2*k), k>=1, with the row polynomials Pe(k, x) := sum(A091042(k, m)*x^m, m=0..k) and Po(k, x) := 2*sum(A091044(k, m)*x^m, m=0..k-1); see also triangle A091043.
From Paul D. Hanna, Apr 18 2012: (Start)
Let A(x) be the g.f. of the flattened sequence, then:
G.f.: A(x) = Sum_{n>=0} x^(n^2) * (1+x)^(2*n).
G.f.: A(x) = Sum_{n>=0} x^n*(1+x)^(2*n) * Product_{k=1..n} (1 - (1+x)^2*x^(4*k-3)) / (1 - (1+x)^2*x^(4*k-1)).
G.f.: A(x) = 1/(1 - x*(1+x)^2/(1 + x*(1-x^2)*(1+x)^2/(1 - x^5*(1+x)^2/(1 + x^3*(1-x^4)*(1+x)^2/(1 - x^9*(1+x)^2/(1 + x^5*(1-x^6)*(1+x)^2/(1 - x^13*(1+x)^2/(1 + x^7*(1-x^8)*(1+x)^2/(1 - ...))))))))), a continued fraction.
(End)
From Peter Bala, Jul 14 2015: (Start)
Denote this array by P. Then P * transpose(P) is the square array ( binomial(2*n + 2*k, 2*k) )n,k>=0, which, read by antidiagonals, is A086645.
Transpose(P) is a generalized Riordan array (1, (1 + x)^2) as defined in the Bala link.
Let p(x) = (1 + x)^2. P^2 gives the coefficients in the expansion of the polynomials ( p(p(x)) )^n, P^3 gives the coefficients in the expansion of the polynomials ( p(p(p(x))) )^n and so on.
Row sums are 2^(2*n); row sums of P^2 are 5^(2*n), row sums of P^3 are 26^(2*n). In general, the row sums of P^k, k = 0,1,2,..., are equal to A003095(k)^(2*n).
The signed version of this array ( (-1)^k*binomial(2*n,k) )n,k>=0 is a left-inverse for A034839.
A034839 * P = A080928. (End)
T(n, k) = GegenbauerC(m, -n, -1) where m = k if kPeter Luschny, May 08 2016
G.f.: 1/(1-x*(y+1)^2). - Vladimir Kruchinin, Nov 22 2020

A119900 Triangle read by rows: T(n,k) is the number of binary words of length n with k strictly increasing runs, for 0<=k<=n.

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 0, 4, 4, 0, 0, 1, 10, 5, 0, 0, 0, 6, 20, 6, 0, 0, 0, 1, 21, 35, 7, 0, 0, 0, 0, 8, 56, 56, 8, 0, 0, 0, 0, 1, 36, 126, 84, 9, 0, 0, 0, 0, 0, 10, 120, 252, 120, 10, 0, 0, 0, 0, 0, 1, 55, 330, 462, 165, 11, 0, 0, 0, 0, 0, 0, 12, 220, 792, 792, 220, 12, 0, 0, 0, 0, 0, 0, 1, 78
Offset: 0

Views

Author

Emeric Deutsch, May 27 2006

Keywords

Comments

Sum of terms in row n is 2^n (A000079). Sum of terms in column k is A001906(k+1) (the even-indexed Fibonacci numbers). Row n contains 1+floor(n/2) nonzero terms. Sum_{k=0..n} k*T(n,k) = (3n+1)*2^(n-2) = A066373(n+1) for n>=1.
Triangle T(n,k), 0<=k<=n, read by rows, given by [0,1/2,-1/2,0,0,0,0,0, 0,...] DELTA [2,-1/2,1/2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 02 2008
From R. Bagula's comment in A053122 (cf. Damianou link), the columns of this array give the coefficients (mod sign) of the characteristic polynomials for the Cartan matrix of the root system A_n. - Tom Copeland, Oct 11 2014
Odd rows contain the Pascal triangle numbers A091042. See A034867 and A034839 for some relations to tan(x). - Tom Copeland, Oct 15 2014

Examples

			The binary word 1/0/01/01/1/1/01 has 7 strictly increasing runs.
T(5,3)=6 because we have 0/01/01, 01/0/01, 01/01/0, 01/1/01, 01/01/1 and 1/01/01 (the runs are separated by /).
Triangle starts:
  1;
  0,2;
  0,1,3;
  0,0,4,4;
  0,0,1,10,5;
  0,0,0,6,20,6;
		

Crossrefs

Programs

  • Magma
    /* triangle */ [[Binomial(n+1, 2*k-n): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Oct 22 2017
  • Maple
    T:=(n,k)->binomial(n+1,2*k-n): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    Table[Binomial[n + 1, 2 k - n], {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 21 2016 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n+1, 2*k-n), ", "))) \\ G. C. Greubel, Oct 22 2017
    

Formula

T(n,k) = binomial(n+1,2k-n).
G.f.: 1/(1 - 2*t*z - t*(1-t)*z^2).
T(n,k) = A034867(n,n-k)
From Tom Copeland, Sep 30 2011: (Start)
With K(x,t) = 1/{d/dx{x/[t-1+1/(1-x)]}} = [t-1+1/(1-x)]^2/{t-[x/(1-x)]^2}, the g.f. of A119900 = K(x*t,t)-t+1.
From formulas in A134264: K(x,t)d/dx is a generator for A001263. A refinement of A119900 to partition polynomials is given by umbralizing
K(x,t) roughly as K(h.x,h_0) and precisely as in A134264 as
W(x)= 1/{d/dx[f(x)]}=1/{d/dx[x/h(x)]}. (End)
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2). - Philippe Deléham, Oct 02 2011
From Tom Copeland, Dec 07 2015: (Start)
An alternate o.g.f. is (1/(x*t)) {-1 + 1 / [1 - (1/t)[x*t/(1-x*t)]^2]} = Sum_{n>0} x^(2(n-1)+1) t^(n-1) / (1-t*x)^(2n) = x + 2t x^2 + (t+3t^2) x^3 + ... .
The n-th diagonal has elements binomial(2n+1+k,k), starting with k=0 for the first non-vanishing element, with o.g.f. (1-x)^(-2(n+1)). The first few subdiagonals are shifted versions of A000292, A000389, and A000580. Cf. A049310.
See A034867 for the matrix representation for the infinitesimal generator K(x,t) d/dx for the Narayana polynomials. (End)
From Peter Bala, Aug 17 2016: (Start)
Let S(k,n) = Sum_{i = 1..n} i^k. Calculations in Zielinski 2016 suggest the following identity holds involving the p-th row elements of this triangle:
Sum_{k = 0..p} T(p,k)*S(2*k + 1,n) = (n*(n + 1)/2)^(p+1).
For example, for row 6 we find S(7,n) + 21*S(9,n) + 35*S(11,n) + 7*S(13,n) = (n*(n + 1)/2)^7.
There appears to be a similar result for the even power sums S(2*k,n) involving A207543. (End)

Extensions

Keyword tabl added by Philippe Deléham, Jan 26 2010

A103327 Triangle read by rows: T(n,k) = binomial(2n+1, 2k+1).

Original entry on oeis.org

1, 3, 1, 5, 10, 1, 7, 35, 21, 1, 9, 84, 126, 36, 1, 11, 165, 462, 330, 55, 1, 13, 286, 1287, 1716, 715, 78, 1, 15, 455, 3003, 6435, 5005, 1365, 105, 1, 17, 680, 6188, 19448, 24310, 12376, 2380, 136, 1, 19, 969, 11628, 50388, 92378, 75582, 27132, 3876, 171, 1
Offset: 0

Views

Author

Ralf Stephan, Feb 06 2005

Keywords

Comments

A subset of Pascal's triangle A007318.
Elements have the same parity as those of Pascal's triangle.
Matrix inverse is A104033. - Paul D. Hanna, Feb 28 2005
Row reverse of A091042. - Peter Bala, Jul 29 2013
Let E(y) = cosh(sqrt(y)) = 1 + 3*y/3! + 5*y^2/5! + 7*y^3/7! + .... Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence (2*n+1)! as defined in Wang and Wang. Cf. A086645. - Peter Bala, Aug 06 2013
The row polynomial P(d, x) = Sum_{k=0..d} T(d, k)*x^k, multiplied by (2*d)!/d! = A001813(d), gives the numerator polynomial of the o.g.f. of the sequence of the diagonal d, for d >= 0, of the Sheffer triangle Lah[4,3] given in A292219. - Wolfdieter Lang, Oct 12 2017

Examples

			The triangle T(n, k) begins:
n\k   0    1     2      3      4      5      6     7    8   9  10 ...
0:    1
1:    3    1
2:    5   10     1
3:    7   35    21      1
4:    9   84   126     36      1
5:   11  165   462    330     55      1
6:   13  286  1287   1716    715     78      1
7:   15  455  3003   6435   5005   1365    105     1
8:   17  680  6188  19448  24310  12376   2380   136    1
9:   19  969 11628  50388  92378  75582  27132  3876  171   1
10:  21 1330 20349 116280 293930 352716 203490 54264 5985 210   1
... reformatted and extended. - _Wolfdieter Lang_, Oct 12 2017
From _Peter Bala_, Aug 06 2013: (Start)
Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n+1)! the column generating functions begin
1st col: cosh(sqrt(y)) = 1 + 3*y/3! + 5*y^2/5! + 7*y^3/7! + 9*y^4/9! + ....
2nd col: 1/3!*y*cosh(sqrt(y)) = y/3! + 10*y^2/5! + 35*y^3/7! + 84*y^4/9! + ....
3rd col: 1/5!*y^2*cosh(sqrt(y)) = y^2/5! + 21*y^3/7!! + 126*y^4/9! + 462*y^5/11! + .... (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.

Crossrefs

Reflected version of A091042. Cf. A086645, A103328.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(2*n+1, 2*k+1) ))); # G. C. Greubel, Aug 01 2019
  • Magma
    [Binomial(2*n+1, 2*k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    Flatten[Table[Binomial[2n+1,2k+1],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 19 2014 *)
  • Maxima
    create_list(binomial(2*n+1,2*k+1),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1+X*(1-Y))/((1+X*(1-Y))^2-4*X),n,x),k,y)} \\ Paul D. Hanna, Feb 28 2005
    
  • PARI
    T(n,k) = binomial(2*n+1, 2*k+1);
    for(n=0, 12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    [[binomial(2*n+1, 2*k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

G.f. for column k: Sum_{j=0..k+1} C(2*(k+1), 2*j)*x^j/(1-x)^(2*(k+1)). - Paul Barry, Feb 24 2005
G.f.: A(x, y) = (1 + x*(1-y))/( (1 + x*(1-y))^2 - 4*x ). - Paul D. Hanna, Feb 28 2005
Sum_{k=0..n} T(n, k)*A000364(n-k) = A002084(n). - Philippe Deléham, Aug 27 2005
E.g.f.: 1/sqrt(x)*sinh(sqrt(x)*t)*cosh(t) = t + (3 + x)*t^3/3! + (5 + 10*x + x^2)*t^5/5! + .... - Peter Bala, Jul 29 2013
T(n+2,k+2) = 2*T(n+1,k+2) + 2*T(n+1,k+1) - T(n,k+2) + 2*T(n,k+1) - T(n,k). - Emanuele Munarini, Jul 05 2017

A086646 Triangle, read by rows, of numbers T(n,k), 0 <= k <= n, given by T(n,k) = A000364(n-k)*binomial(2*n, 2*k).

Original entry on oeis.org

1, 1, 1, 5, 6, 1, 61, 75, 15, 1, 1385, 1708, 350, 28, 1, 50521, 62325, 12810, 1050, 45, 1, 2702765, 3334386, 685575, 56364, 2475, 66, 1, 199360981, 245951615, 50571521, 4159155, 183183, 5005, 91, 1, 19391512145, 23923317720, 4919032300, 404572168, 17824950, 488488, 9100, 120, 1
Offset: 0

Views

Author

Philippe Deléham, Jul 26 2003

Keywords

Comments

The elements of the matrix inverse are apparently given by T^(-1)(n,k) = (-1)^(n+k)*A086645(n,k). - R. J. Mathar, Mar 14 2013
Let E(y) = Sum_{n >= 0} y^n/(2*n)! = cosh(sqrt(y)). Then this triangle is the generalized Riordan array (1/E(-y), y) with respect to the sequence (2*n)! as defined in Wang and Wang. - Peter Bala, Aug 06 2013
Let P_n be the poset of even size subsets of [2n] ordered by inclusion. Then Sum_{k=0..n}(-1)^(n-k)*T(n,k)*x^k is the characteristic polynomial of P_n. - Geoffrey Critzer, Feb 24 2021

Examples

			Triangle begins:
      1;
      1,     1;
      5,     6,     1;
     61,    75,    15,    1;
   1385,  1708,   350,   28,  1;
  50521, 62325, 12810, 1050, 45, 1;
  ...
From _Peter Bala_, Aug 06 2013: (Start)
Polynomial  |        Real zeros to 5 decimal places
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
R(5,-x)     | 1, 9.18062, 13.91597
R(10,-x)    | 1, 9.00000, 25.03855,  37.95073
R(15,-x)    | 1, 9.00000, 25.00000,  49.00895, 71.83657
R(20,-x)    | 1, 9.00000, 25.00000,  49.00000, 81.00205, 114.87399
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
(End)
		

Crossrefs

Cf. A000281.
Cf. A000795 (row sums).
Cf. A055133, A086645 (unsigned matrix inverse), A103364, A104033.
T(2n,n) give |A214445(n)|.

Programs

  • Maple
    A086646 := proc(n,k)
        if k < 0 or k > n then
            0 ;
        else
            A000364(n-k)*binomial(2*n,2*k) ;
        end if;
    end proc: # R. J. Mathar, Mar 14 2013
  • Mathematica
    R[0, _] = 1;
    R[n_, x_] := R[n, x] = x^n - Sum[(-1)^(n-k) Binomial[2n, 2k] R[k, x], {k, 0, n-1}];
    Table[CoefficientList[R[n, x], x], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 19 2019 *)
    T[0, 0] := 1; T[n_, 0] := -Sum[(-1)^k T[n, k], {k, 1, n}]; T[n_, k_]/;0Oliver Seipel, Jan 11 2025 *)

Formula

cosh(u*t)/cos(t) = Sum_{n>=0} S_2n(u)*(t^(2*n))*(1/(2*n)!). S_2n(u) = Sum_{k>=0} T(n,k)*u^(2*k). Sum_{k>=0} (-1)^k*T(n,k) = 0. Sum_{k>=0} T(n,k) = 2^n*A005647(n); A005647: Salie numbers.
Triangle T(n,k) read by rows; given by [1, 4, 9, 16, 25, 36, 49, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938.
Sum_{k=0..n} (-1)^k*T(n,k)*4^(n-k) = A000281(n). - Philippe Deléham, Jan 26 2004
Sum_{k=0..n} T(n,k)*(-4)^k*9^(n-k) = A002438(n+1). - Philippe Deléham, Aug 26 2005
Sum_{k=0..n} (-1)^k*9^(n-k)*T(n,k) = A000436(n). - Philippe Deléham, Oct 27 2006
From Peter Bala, Aug 06 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/(2*n)! = cosh(sqrt(y)). Generating function: E(x*y)/E(-y) = 1 + (1 + x)*y/2! + (5 + 6*x + x^2)*y^2/4! + (61 + 75*x + 15*x^2 + x^3)*y^3/6! + .... The n-th power of this array has a generating function E(x*y)/E(-y)^n. In particular, the matrix inverse is a signed version of A086645 with a generating function E(-y)*E(x*y).
Recurrence equation for the row polynomials: R(n,x) = x^n - Sum_{k = 0..n-1} (-1)^(n-k)*binomial(2*n,2*k)*R(k,x) with initial value R(0,x) = 1.
It appears that for arbitrary complex x we have lim_{n -> infinity} R(n,-x^2)/R(n,0) = cos(x*Pi/2). A stronger result than pointwise convergence may hold: the convergence may be uniform on compact subsets of the complex plane. This would explain the observation that the real zeros of the polynomials R(n,-x) seem to converge to the odd squares 1, 9, 25, ... as n increases. Some numerical examples are given below. Cf. A055133, A091042 and A103364.
R(n,-1) = 0; R(n,-9) = (-1)^n*2*4^n; R(n,-25) = (-1)^n*2*(16^n - 4^n);
R(n,-49) = (-1)^n*2*(36^n - 16^n + 4^n). (End)

A103328 Triangle T(n, k) read by rows: binomial(2n, 2k+1).

Original entry on oeis.org

0, 2, 0, 4, 4, 0, 6, 20, 6, 0, 8, 56, 56, 8, 0, 10, 120, 252, 120, 10, 0, 12, 220, 792, 792, 220, 12, 0, 14, 364, 2002, 3432, 2002, 364, 14, 0, 16, 560, 4368, 11440, 11440, 4368, 560, 16, 0, 18, 816, 8568, 31824, 48620, 31824, 8568, 816, 18, 0, 20, 1140, 15504
Offset: 0

Views

Author

Ralf Stephan, Feb 06 2005

Keywords

Comments

A subset of Pascal's triangle A007318 with only even elements.

Examples

			Triangle begins
   0;
   2,   0;
   4,   4,    0;
   6,  20,    6,     0;
   8,  56,   56,     8,     0;
  10, 120,  252,   120,    10,    0;
  12, 220,  792,   792,   220,   12,   0;
  14, 364, 2002,  3432,  2002,  364,  14,  0;
  16, 560, 4368, 11440, 11440, 4368, 560, 16, 0;
  ...
From _Peter Bala_, Jan 30 2022: (Start)
(1/2)*(N^2 + N)^2 = 2*Sum_{j = 1..N} j^3.
(1/2)*(N^2 + N)^4 = 4*Sum_{j = 1..N} j^5 + 4*Sum_{j = 1..N} j^7.
(1/2)*(N^2 + N)^6 = 6*Sum_{j = 1..N} j^7 + 20*Sum_{j = 1..N} j^9 + 6*Sum_{j = 1..N} j^11.
(1/2)*(N^2 + N)^8 = 8*Sum_{j = 1..N} j^9 + 56*Sum_{j = 1..N} j^11 + 56*Sum_{j = 1..N} j^13 + 8*Sum_{j = 1..N} j^15. (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.

Crossrefs

Formula

From Peter Bala, Jan 31 2022: (Start)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) + 2*T(n-2,k-1) - T(n-2,k-2), with T(0,0) = 0, T(1,0) = 2 and T(n,k) = 0 if k < 0 or if k > n-1.
n-th row polynomial R(n,x) = (1/(2*sqrt(x)))*( (1 + sqrt(x))^(2*n) - (1 - sqrt(x))^(2*n) ).
O.g.f.: A(x,t) = 2*t/(1 - 2*(x + 1)*t + (x - 1)^2*t^2) = 2*t + (4 + 4*x)*t^2 + (6 + 20*x + 6*x^2)*t^3 + ....
G.f.: (1/sqrt(x))*sinh(t)*sinh(sqrt(x)*t) = 2*t^2/2! + (4 + 4*x)*t^4/4! + (6 + 20*x^2 + 6*x^3)*t^6/6! + ....
O.g.f. for n-th diagonal: ( Sum_{k = 0..n} binomial(2*n,2*k+1)*x^k )/(1 - x)^(2*n) = 1/(2*sqrt(x))*((1 - sqrt(x))^(-2*n) - (1 + sqrt(x))^(-2*n)).
With a different offset, 2/(x-4)*A(x/(x-4), t*(x-4)/4) = t/(1 + t*(2 - x) + t^2) is a g.f. of A053122.
Define S(r,N) = Sum_{j = 1..N} j^r. Then the following identity holds for n >= 1:
(1/2)*(N^2 + N)^(2*n) = T(n,0)*S(2*n+1,N) + T(n,1)*S(2*n+3,N) + ... + T(n,n-1)*S(4*n-1,N). Some examples are given below. (End)
Showing 1-10 of 24 results. Next