cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A255905 Expansion of exp( Sum_{n >= 1} R(n,u)*x^n/n ), where R(n,u) denotes the n-th row polynomial of A086646.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 23, 31, 9, 1, 371, 484, 128, 16, 1, 10515, 13407, 3228, 360, 25, 1, 461869, 581680, 132291, 13260, 815, 36, 1, 28969177, 36241581, 7981991, 749199, 41167, 1603, 49, 1, 2454072147, 3058280624, 660958100, 59706312, 3060128, 106232, 2856, 64, 1
Offset: 0

Views

Author

Peter Bala, Mar 10 2015

Keywords

Comments

Triangle A086646 has the e.g.f. cosh(sqrt(u)*t)/cos(t). The n-th row polynomial of A086646 is given by the formula R(n,u) = Sum_{k = 0..n} binomial(2*n,2*k)*A000364(n-k)*u^k.
It appears that in the expansion of exp( Sum_{n >= 1} R(n,u)*x^n/n ), the coefficient polynomials in u are always integer polynomials. Alternatively expressed, the o.g.f. for A086646 is (apart from its initial element) the logarithmic derivative of the o.g.f. of the present triangle.
The above conjecture can be extensively generalized. The elements of A000364 can be expressed in terms of the Euler polynomial E(n,x) as A000364(n) = (-1)^n*2^(2*n)*E(2*n,1/2). This suggests considering polynomials of the form P(n,u) = Sum_{k = 0..n} binomial(2*n,2*k)*A(n-k)*u^k, where the sequence A(n) is defined in terms of the Euler polynomials. Calculation suggests that in the expansion of exp( Sum_{n >= 1} P(n,u)*x^n/n ), the coefficient polynomials in u are always integer polynomials for the following choices of A(n):
1) A(n) := k^(2*n)*E(2*n,h/k)
2) A(n) := (4*k)^n*E(n,h/(4*k))
3) A(n) := (2*k)^(2*n+1)*E(2*n+1,h/(2*k))
In each case above, h and k are arbitrary integers except that k is nonzero.
The present triangle (up to signs) is simply the case of conjecture 1 with the choices h = 1 and k = 2.
Similar conjectures can be made if, in the above definition of the polynomial P(n,u), the factor equal to binomial(2*n,2*k) is replaced by binomial(m*n,m*k) for some fixed m = 1,2,3,....

Examples

			The triangle begins
n\k|      0      1      2     3   4   5  6
= = = = = = = = = = = = = = = = = = = = = =
0  |      1
1  |      1      1
2  |      3      4      1
3  |     23     31      9     1
4  |    371    484    128    16   1
5  |  10515  13407   3228   360  25   1
6  | 461869 581680 132291 13260 815  36  1
		

Crossrefs

Programs

  • Maple
    #A255905
    A000364 := n -> (-1)^n*2^(2*n)*euler(2*n, 1/2):
    #define row polynomials of A086646
    R := proc (n, u) add(binomial(2*n, 2*k)*A000364(n-k)*u^k, k = 0 .. n) end proc:
    series(exp(add(R(n, u)*x^n/n, n = 1 .. 9)), x, 9):
    seq(seq(coeff(coeftayl(%, x = 0, n), u, k), k = 0 .. n), n = 0 .. 8);

Formula

O.g.f.: exp( Sum_{n >= 1} R(n,u)*x^n/n ) = exp( (1 + u)*x + (5 + 6*u + u^2)*x^2/2 + (61 + 75*u + 15*u^2 + u^3)*x^3/3 + ... ) = 1 + (1 + u)*x + (3 + 4*u + u^2)*x^2 + (23 + 31*u + 9*u^2 + u^3)*x^3 + ....

A086745 Duplicate of A086646.

Original entry on oeis.org

1, 1, 1, 5, 6, 1, 61, 75, 15, 1, 1385, 1708, 350, 28, 1, 50521, 62325, 12810, 1050, 45, 1
Offset: 0

Views

Author

Keywords

A047999 Sierpiński's [Sierpinski's] triangle (or gasket): triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 2.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Restored the alternative spelling of Sierpinski to facilitate searching for this triangle using regular-expression matching commands in ASCII. - N. J. A. Sloane, Jan 18 2016
Also triangle giving successive states of cellular automaton generated by "Rule 60" and "Rule 102". - Hans Havermann, May 26 2002
Also triangle formed by reading triangle of Eulerian numbers (A008292) mod 2. - Philippe Deléham, Oct 02 2003
Self-inverse when regarded as an infinite lower triangular matrix over GF(2).
Start with [1], repeatedly apply the map 0 -> [00/00], 1 -> [10/11] [Allouche and Berthe]
Also triangle formed by reading triangles A011117, A028338, A039757, A059438, A085881, A086646, A086872, A087903, A104219 mod 2. - Philippe Deléham, Jun 18 2005
J. H. Conway writes (in Math Forum): at least the first 31 rows give odd-sided constructible polygons (sides 1, 3, 5, 15, 17, ... see A001317). The 1's form a Sierpiński sieve. - M. Dauchez (mdzzdm(AT)yahoo.fr), Sep 19 2005
When regarded as an infinite lower triangular matrix, its inverse is a (-1,0,1)-matrix with zeros undisturbed and the nonzero entries in every column form the Prouhet-Thue-Morse sequence (1,-1,-1,1,-1,1,1,-1,...) A010060 (up to relabeling). - David Callan, Oct 27 2006
Triangle read by rows: antidiagonals of an array formed by successive iterates of running sums mod 2, beginning with (1, 1, 1, ...). - Gary W. Adamson, Jul 10 2008
T(n,k) = A057427(A143333(n,k)). - Reinhard Zumkeller, Oct 24 2010
The triangle sums, see A180662 for their definitions, link Sierpiński’s triangle A047999 with seven sequences, see the crossrefs. The Kn1y(n) and Kn2y(n), y >= 1, triangle sums lead to the Sierpiński-Stern triangle A191372. - Johannes W. Meijer, Jun 05 2011
Used to compute the total Steifel-Whitney cohomology class of the Real Projective space. This was an essential component of the proof that there are no product operations without zero divisors on R^n for n not equal to 1, 2, 4 or 8 (real numbers, complex numbers, quaternions, Cayley numbers), proved by Bott and Milnor. - Marcus Jaiclin, Feb 07 2012
T(n,k) = A134636(n,k) mod 2. - Reinhard Zumkeller, Nov 23 2012
T(n,k) = 1 - A219463(n,k), 0 <= k <= n. - Reinhard Zumkeller, Nov 30 2012
From Vladimir Shevelev, Dec 31 2013: (Start)
Also table of coefficients of polynomials s_n(x) of degree n which are defined by formula s_n(x) = Sum_{i=0..n} (binomial(n,i) mod 2)*x^k. These polynomials we naturally call Sierpiński's polynomials. They also are defined by the recursion: s_0(x)=1, s_(2*n+1)(x) = (x+1)*s_n(x^2), n>=0, and s_(2*n)(x) = s_n(x^2), n>=1.
Note that: s_n(1) = A001316(n),
s_n(2) = A001317(n),
s_n(3) = A100307(n),
s_n(4) = A001317(2*n),
s_n(5) = A100308(n),
s_n(6) = A100309(n),
s_n(7) = A100310(n),
s_n(8) = A100311(n),
s_n(9) = A100307(2*n),
s_n(10) = A006943(n),
s_n(16) = A001317(4*n),
s_n(25) = A100308(2*n), etc.
The equality s_n(10) = A006943(n) means that sequence A047999 is obtained from A006943 by the separation by commas of the digits of its terms. (End)
Comment from N. J. A. Sloane, Jan 18 2016: (Start)
Take a diamond-shaped region with edge length n from the top of the triangle, and rotate it by 45 degrees to get a square S_n. Here is S_6:
[1, 1, 1, 1, 1, 1]
[1, 0, 1, 0, 1, 0]
[1, 1, 0, 0, 1, 1]
[1, 0, 0, 0, 1, 0]
[1, 1, 1, 1, 0, 0]
[1, 0, 1, 0, 0, 0].
Then (i) S_n contains no square (parallel to the axes) with all four corners equal to 1 (cf. A227133); (ii) S_n can be constructed by using the greedy algorithm with the constraint that there is no square with that property; and (iii) S_n contains A064194(n) 1's. Thus A064194(n) is a lower bound on A227133(n). (End)
See A123098 for a multiplicative encoding of the rows, i.e., product of the primes selected by nonzero terms; e.g., 1 0 1 => 2^1 * 3^0 * 5^1. - M. F. Hasler, Sep 18 2016
From Valentin Bakoev, Jul 11 2020: (Start)
The Sierpinski's triangle with 2^n rows is a part of a lower triangular matrix M_n of dimension 2^n X 2^n. M_n is a block matrix defined recursively: M_1= [1, 0], [1, 1], and for n>1, M_n = [M_(n-1), O_(n-1)], [M_(n-1), M_(n-1)], where M_(n-1) is a block matrix of the same type, but of dimension 2^(n-1) X 2^(n-1), and O_(n-1) is the zero matrix of dimension 2^(n-1) X 2^(n-1). Here is how M_1, M_2 and M_3 look like:
1 0 1 0 0 0 1 0 0 0 0 0 0 0
1 1 1 1 0 0 1 1 0 0 0 0 0 0 - It is seen the self-similarity of the
1 0 1 0 1 0 1 0 0 0 0 0 matrices M_1, M_2, ..., M_n, ...,
1 1 1 1 1 1 1 1 0 0 0 0 analogously to the Sierpinski's fractal.
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1
M_n can also be defined as M_n = M_1 X M_(n-1) where X denotes the Kronecker product. M_n is an important matrix in coding theory, cryptography, Boolean algebra, monotone Boolean functions, etc. It is a transformation matrix used in computing the algebraic normal form of Boolean functions. Some properties and links concerning M_n can be seen in LINKS. (End)
Sierpinski's gasket has fractal (Hausdorff) dimension log(A000217(2))/log(2) = log(3)/log(2) = 1.58496... (and cf. A020857). This gasket is the first of a family of gaskets formed by taking the Pascal triangle (A007318) mod j, j >= 2 (see CROSSREFS). For prime j, the dimension of the gasket is log(A000217(j))/log(j) = log(j(j + 1)/2)/log(j) (see Reiter and Bondarenko references). - Richard L. Ollerton, Dec 14 2021

Examples

			Triangle begins:
              1,
             1,1,
            1,0,1,
           1,1,1,1,
          1,0,0,0,1,
         1,1,0,0,1,1,
        1,0,1,0,1,0,1,
       1,1,1,1,1,1,1,1,
      1,0,0,0,0,0,0,0,1,
     1,1,0,0,0,0,0,0,1,1,
    1,0,1,0,0,0,0,0,1,0,1,
   1,1,1,1,0,0,0,0,1,1,1,1,
  1,0,0,0,1,0,0,0,1,0,0,0,1,
  ...
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • Brand, Neal; Das, Sajal; Jacob, Tom. The number of nonzero entries in recursively defined tables modulo primes. Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990). Congr. Numer. 78 (1990), 47--59. MR1140469 (92h:05004).
  • John W. Milnor and James D. Stasheff, Characteristic Classes, Princeton University Press, 1974, pp. 43-49 (sequence appears on p. 46).
  • H.-O. Peitgen, H. Juergens and D. Saupe: Chaos and Fractals (Springer-Verlag 1992), p. 408.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.

Crossrefs

Sequences based on the triangles formed by reading Pascal's triangle mod m: (this sequence) (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Other versions: A090971, A038183.
From Johannes W. Meijer, Jun 05 2011: (Start)
A106344 is a skew version of this triangle.
Triangle sums (see the comments): A001316 (Row1; Related to Row2), A002487 (Related to Kn11, Kn12, Kn13, Kn21, Kn22, Kn23), A007306 (Kn3, Kn4), A060632 (Fi1, Fi2), A120562 (Ca1, Ca2), A112970 (Gi1, Gi2), A127830 (Ze3, Ze4). (End)

Programs

  • Haskell
    import Data.Bits (xor)
    a047999 :: Int -> Int -> Int
    a047999 n k = a047999_tabl !! n !! k
    a047999_row n = a047999_tabl !! n
    a047999_tabl = iterate (\row -> zipWith xor ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Dec 11 2011, Oct 24 2010
    
  • Magma
    A047999:= func< n,k | BitwiseAnd(n-k, k) eq 0 select 1 else 0 >;
    [A047999(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 03 2024
  • Maple
    # Maple code for first M rows (here M=10) - N. J. A. Sloane, Feb 03 2016
    ST:=[1,1,1]; a:=1; b:=2; M:=10;
    for n from 2 to M do ST:=[op(ST),1];
    for i from a to b-1 do ST:=[op(ST), (ST[i+1]+ST[i+2]) mod 2 ]; od:
    ST:=[op(ST),1];
    a:=a+n; b:=a+n; od:
    ST; # N. J. A. Sloane
    # alternative
    A047999 := proc(n,k)
        modp(binomial(n,k),2) ;
    end proc:
    seq(seq(A047999(n,k),k=0..n),n=0..12) ; # R. J. Mathar, May 06 2016
  • Mathematica
    Mod[ Flatten[ NestList[ Prepend[ #, 0] + Append[ #, 0] &, {1}, 13]], 2] (* Robert G. Wilson v, May 26 2004 *)
    rows = 14; ca = CellularAutomaton[60, {{1}, 0}, rows-1]; Flatten[ Table[ca[[k, 1 ;; k]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *)
    Mod[#,2]&/@Flatten[Table[Binomial[n,k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 26 2019 *)
    A047999[n_,k_]:= Boole[BitAnd[n-k,k]==0];
    Table[A047999[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 03 2025 *)
  • PARI
    \\ Recurrence for Pascal's triangle mod p, here p = 2.
    p = 2; s=13; T=matrix(s,s); T[1,1]=1;
    for(n=2,s, T[n,1]=1; for(k=2,n, T[n,k] = (T[n-1,k-1] + T[n-1,k])%p ));
    for(n=1,s,for(k=1,n,print1(T[n,k],", "))) \\ Gerald McGarvey, Oct 10 2009
    
  • PARI
    A011371(n)=my(s);while(n>>=1,s+=n);s
    T(n,k)=A011371(n)==A011371(k)+A011371(n-k) \\ Charles R Greathouse IV, Aug 09 2013
    
  • PARI
    T(n,k)=bitand(n-k,k)==0 \\ Charles R Greathouse IV, Aug 11 2016
    
  • Python
    def A047999_T(n,k):
        return int(not ~n & k) # Chai Wah Wu, Feb 09 2016
    

Formula

Lucas's Theorem is that T(n,k) = 1 if and only if the 1's in the binary expansion of k are a subset of the 1's in the binary expansion of n; or equivalently, k AND NOT n is zero, where AND and NOT are bitwise operators. - Chai Wah Wu, Feb 09 2016 and N. J. A. Sloane, Feb 10 2016
Sum_{k>=0} T(n, k) = A001316(n) = 2^A000120(n).
T(n,k) = T(n-1,k-1) XOR T(n-1,k), 0 < k < n; T(n,0) = T(n,n) = 1. - Reinhard Zumkeller, Dec 13 2009
T(n,k) = (T(n-1,k-1) + T(n-1,k)) mod 2 = |T(n-1,k-1) - T(n-1,k)|, 0 < k < n; T(n,0) = T(n,n) = 1. - Rick L. Shepherd, Feb 23 2018
From Vladimir Shevelev, Dec 31 2013: (Start)
For polynomial {s_n(x)} we have
s_0(x)=1; for n>=1, s_n(x) = Product_{i=1..A000120(n)} (x^(2^k_i) + 1),
if the binary expansion of n is n = Sum_{i=1..A000120(n)} 2^k_i;
G.f. Sum_{n>=0} s_n(x)*z^n = Product_{k>=0} (1 + (x^(2^k)+1)*z^(2^k)) (0
Let x>1, t>0 be real numbers. Then
Sum_{n>=0} 1/s_n(x)^t = Product_{k>=0} (1 + 1/(x^(2^k)+1)^t);
Sum_{n>=0} (-1)^A000120(n)/s_n(x)^t = Product_{k>=0} (1 - 1/(x^(2^k)+1)^t).
In particular, for t=1, x>1, we have
Sum_{n>=0} (-1)^A000120(n)/s_n(x) = 1 - 1/x. (End)
From Valentin Bakoev, Jul 11 2020: (Start)
(See my comment about the matrix M_n.) Denote by T(i,j) the number in the i-th row and j-th column of M_n (0 <= i, j < 2^n). When i>=j, T(i,j) is the j-th number in the i-th row of the Sierpinski's triangle. For given i and j, we denote by k the largest integer of the type k=2^m and k
T(i,0) = T(i,i) = 1, or
T(i,j) = 0 if i < j, or
T(i,j) = T(i-k,j), if j < k, or
T(i,j) = T(i-k,j-k), if j >= k.
Thus, for given i and j, T(i,j) can be computed in O(log_2(i)) steps. (End)

Extensions

Additional links from Lekraj Beedassy, Jan 22 2004

A086645 Triangle read by rows: T(n, k) = binomial(2n, 2k).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 28, 70, 28, 1, 1, 45, 210, 210, 45, 1, 1, 66, 495, 924, 495, 66, 1, 1, 91, 1001, 3003, 3003, 1001, 91, 1, 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1, 1, 153, 3060, 18564, 43758, 43758, 18564, 3060, 153, 1, 1, 190, 4845, 38760
Offset: 0

Author

Philippe Deléham, Jul 26 2003

Keywords

Comments

Terms have the same parity as those of Pascal's triangle.
Coefficients of polynomials (1/2)*((1 + x^(1/2))^(2n) + (1 - x^(1/2))^(2n)).
Number of compositions of 2n having k parts greater than 1; example: T(3, 2) = 15 because we have 4+2, 2+4, 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2, 3+3. - Philippe Deléham, May 18 2005
Number of binary words of length 2n - 1 having k runs of consecutive 1's; example: T(3,2) = 15 because we have 00101, 01001, 01010, 01011, 01101, 10001, 10010, 10011, 10100, 10110, 10111, 11001, 11010, 11011, 11101. - Philippe Deléham, May 18 2005
Let M_n be the n X n matrix M_n(i, j) = T(i, j-1); then for n > 0, det(M_n) = A000364(n), Euler numbers; example: det([1, 1, 0, 0; 1, 6, 1, 0; 1, 15, 15, 1; 1, 28, 70, 28 ]) = 1385 = A000364(4). - Philippe Deléham, Sep 04 2005
Equals ConvOffsStoT transform of the hexagonal numbers, A000384: (1, 6, 15, 28, 45, ...); e.g., ConvOffs transform of (1, 6, 15, 28) = (1, 28, 70, 28, 1). - Gary W. Adamson, Apr 22 2008
From Peter Bala, Oct 23 2008: (Start)
Let C_n be the root lattice generated as a monoid by {+-2*e_i: 1 <= i <= n; +-e_i +- e_j: 1 <= i not equal to j <= n}. Let P(C_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(C_n) [Ardila et al.]. See A127674 for (a signed version of) the corresponding array of f-vectors for these type C_n polytopes. See A008459 for the array of h-vectors for type A_n polytopes and A108558 for the array of h-vectors associated with type D_n polytopes.
The Hilbert transform of this triangle is A142992 (see A145905 for the definition of this term).
(End)
Diagonal sums: A108479. - Philippe Deléham, Sep 08 2009
Coefficients of Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
Generalized Narayana triangle for 4^n (or cosh(2x)). - Paul Barry, Sep 28 2010
Coefficients of the matrix inverse appear to be T^(-1)(n,k) = (-1)^(n+k)*A086646(n,k). - R. J. Mathar, Mar 12 2013
Let E(y) = Sum_{n>=0} y^n/(2*n)! = cosh(sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence (2*n)! as defined in Wang and Wang. Cf. A103327. - Peter Bala, Aug 06 2013
Row 6, (1,66,495,924,495,66,1), plays a role in expansions of powers of the Dedekind eta function. See the Chan link, p. 534, and A034839. - Tom Copeland, Dec 12 2016

Examples

			From _Peter Bala_, Oct 23 2008: (Start)
The triangle begins
n\k|..0.....1.....2.....3.....4.....5.....6
===========================================
0..|..1
1..|..1.....1
2..|..1.....6.....1
3..|..1....15....15.....1
4..|..1....28....70....28.....1
5..|..1....45...210...210....45.....1
6..|..1....66...495...924...495....66.....1
...
(End)
From _Peter Bala_, Aug 06 2013: (Start)
Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n)! the column generating functions begin
1st col: cosh(sqrt(y)) = 1 + y/2! + y^2/4! + y^3/6! + y^4/8! + ....
2nd col: 1/2!*y*cosh(sqrt(y)) = y/2! + 6*y^2/4! + 15*y^3/6! + 28*y^4/8! + ....
3rd col: 1/4!*y^2*cosh(sqrt(y)) = y^2/4! + 15*y^3/6! + 70*y^4/8! + 210*y^5/10! + .... (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.

Crossrefs

Cf. A008459, A108558, A127674, A142992. - Peter Bala, Oct 23 2008
Cf. A103327 (binomial(2n+1, 2k+1)), A103328 (binomial(2n, 2k+1)), A091042 (binomial(2n+1, 2k)). -Wolfdieter Lang, Jan 06 2013
Cf. A086646 (unsigned matrix inverse), A103327.
Cf. A034839.

Programs

  • Magma
    /* As triangle: */ [[Binomial(2*n, 2*k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 14 2016
  • Maple
    A086645:=(n,k)->binomial(2*n,2*k): seq(seq(A086645(n,k),k=0..n),n=0..12);
  • Mathematica
    Table[Binomial[2 n, 2 k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 13 2016 *)
  • Maxima
    create_list(binomial(2*n,2*k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    {T(n, k) = binomial(2*n, 2*k)};
    
  • PARI
    {T(n, k) = sum( i=0, min(k, n-k), 4^i * binomial(n, 2*i) * binomial(n - 2*i, k-i))}; /* Michael Somos, May 26 2005 */
    

Formula

T(n, k) = (2*n)!/((2*(n-k))!*(2*k)!) row sums = A081294. COLUMNS: A000012, A000384
Sum_{k>=0} T(n, k)*A000364(k) = A000795(n) = (2^n)*A005647(n).
Sum_{k>=0} T(n, k)*2^k = A001541(n). Sum_{k>=0} T(n, k)*3^k = 2^n*A001075(n). Sum_{k>=0} T(n, k)*4^k = A083884(n). - Philippe Deléham, Feb 29 2004
O.g.f.: (1 - z*(1+x))/(x^2*z^2 - 2*x*z*(1+z) + (1-z)^2) = 1 + (1 + x)*z +(1 + 6*x + x^2)*z^2 + ... . - Peter Bala, Oct 23 2008
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A081294(n), A001541(n), A090965(n), A083884(n), A099140(n), A099141(n), A099142(n), A165224(n), A026244(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 08 2009
Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
From Paul Barry, Sep 28 2010: (Start)
G.f.: 1/(1-x-x*y-4*x^2*y/(1-x-x*y)) = (1-x*(1+y))/(1-2*x*(1+y)+x^2*(1-y)^2);
E.g.f.: exp((1+y)*x)*cosh(2*sqrt(y)*x);
T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2*(k-j))*4^(k-j). (End)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-1) - T(n-2,k) - T(n-2,k-2), with T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 26 2013
From Peter Bala, Sep 22 2021: (Start)
n-th row polynomial R(n,x) = (1-x)^n*T(n,(1+x)/(1-x)), where T(n,x) is the n-th Chebyshev polynomial of the first kind. Cf. A008459.
R(n,x) = Sum_{k = 0..n} binomial(n,2*k)*(4*x)^k*(1 + x)^(n-2*k).
R(n,x) = n*Sum_{k = 0..n} (n+k-1)!/((n-k)!*(2*k)!)*(4*x)^k*(1-x)^(n-k) for n >= 1. (End)

A000795 Salié numbers: expansion of cosh x / cos x = Sum_{n >= 0} a(n)*x^(2n)/(2n)!.

Original entry on oeis.org

1, 2, 12, 152, 3472, 126752, 6781632, 500231552, 48656756992, 6034272215552, 929327412759552, 174008703107274752, 38928735228629389312, 10255194381004799025152, 3142142941901073853366272, 1107912434323301224813002752, 445427836895850552387642130432
Offset: 0

Keywords

Comments

Named after the German mathematician Hans Salié (1902-1978). - Amiram Eldar, Jun 10 2021

Examples

			cosh x / cos x = Sum_{n>=0} a(n)*x^(2n)/(2n)! = 1 + x^2 + (1/2)*x^4 + (19/90)*x^6 + (31/360)*x^8 + (3961/113400)*x^10 + ...
G.f. = 1 + 2*x + 12*x^2 + 252*x^3 + 3472*x^4 + 126752*x^5 + 6781632*x^6 + ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 86, Problem 32.
  • Hans Salié, Arithmetische Eigenschaften der Koeffizienten einer speziellen Hurwitzschen Potenzreihe, Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Natur. Reihe 12 (1963), pp. 617-618.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A005647(n) = a(n)/2^n.

Programs

  • Maple
    A000795 := proc(n)
            (2*n)!*coeftayl( cosh(x)/cos(x),x=0,2*n) ;
    end proc: # R. J. Mathar, Oct 20 2011
  • Mathematica
    max = 16; se = Series[ Cosh[x] / Cos[x], {x, 0, 2*max} ]; a[n_] := SeriesCoefficient[ se, 2*n ]*(2*n)!; Table[ a[n], {n, 0, max} ] (* Jean-François Alcover, Apr 02 2012 *)
    With[{nn=40},Take[CoefficientList[Series[Cosh[x]/Cos[x],{x,0,nn}],x] Range[ 0,nn]!,{1,-1,2}]] (* Harvey P. Dale, May 11 2012 *)
    a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ Cosh[ x] / Cos[ x], {x, 0, m}]]]; (* Michael Somos, Aug 15 2015 *)
  • Sage
    # Generalized algorithm of L. Seidel (1877)
    def A000795_list(n) :
        R = []; A = {-1:0, 0:0}
        k = 0; e = 1
        for i in range(n) :
            Am = 1 if e == 1 else 0
            A[k + e] = 0
            e = -e
            for j in (0..i) :
                Am += A[k]
                A[k] = Am
                k += e
            if e == -1 : R.append(A[-i//2])
        return R
    A000795_list(10) # Peter Luschny, Jun 02 2012

Formula

a(n) = Sum_{k=0..n} binomial(2n, 2k)*A000364(n-k). - Philippe Deléham, Dec 16 2003
a(n) = Sum_{k>=0} (-1)^(n+k)*2^(2n-k)*A065547(n, k). - Philippe Deléham, Feb 26 2004
a(n) = Sum_{k>=0} A086646(n, k). - Philippe Deléham, Feb 26 2004
G.f.: 1 / (1 - (1^2+1)*x / (1 - 2^2*x / (1 - (3^2+1)*x / (1 - 4^2*x / (1 - (5^2+1)*x / (1 - 6^2*x / ...)))))). - Michael Somos, May 12 2012
G.f.: Q(0)/(1-2*x), where Q(k) = 1 - 8*x^2*(2*k^2+2*k+1)*(k+1)^2/( 8*x^2*(2*k^2+2*k+1)*(k+1)^2 - (1 - 8*x*k^2 - 4*x*k -2*x)*(1 - 8*x*k^2 - 20*x*k -14*x)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
a(n) ~ (2*n)! * 2^(2*n+2) * cosh(Pi/2) / Pi^(2*n+1). - Vaclav Kotesovec, Mar 08 2014
a(n) = 1 - Sum_{k=1..n} (-1)^k * binomial(2*n,2*k) * a(n-k). - Ilya Gutkovskiy, Mar 09 2022

A000281 Expansion of cos(x)/cos(2x).

Original entry on oeis.org

1, 3, 57, 2763, 250737, 36581523, 7828053417, 2309644635483, 898621108880097, 445777636063460643, 274613643571568682777, 205676334188681975553003, 184053312545818735778213457, 193944394596325636374396208563
Offset: 0

Keywords

Comments

a(n) is (2n)! times the coefficient of x^(2n) in the Taylor series for cos(x)/cos(2x).

Examples

			cos x / cos 2*x = 1 + 3*x^2/2 + 19*x^4/8 + 307*x^6/80 + ...
		

References

  • J. W. L. Glaisher, "On the coefficients in the expansions of cos x / cos 2x and sin x / cos 2x", Quart. J. Pure and Applied Math., 45 (1914), 187-222.
  • I. J. Schwatt, Intro. to Operations with Series, Chelsea, p. 278.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a := n -> (-1)^n*2^(6*n+1)*(Zeta(0,-2*n,1/8)-Zeta(0,-2*n,5/8)):
    seq(a(n), n=0..13); # Peter Luschny, Mar 11 2015
  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Cos[x]/Cos[2x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Oct 06 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n*=2; n! * polcoeff( cos(x + x * O(x^n)) / cos(2*x + x * O(x^n)), n))}; /* Michael Somos, Feb 09 2006 */

Formula

a(n) = Sum_{k=0..n} (-1)^k*binomial(2n, 2k)*A000364(n-k)*4^(n-k). - Philippe Deléham, Jan 26 2004
E.g.f.: Sum_{k>=0} a(k)x^(2k)/(2k)! = cos(x)/cos(2x).
a(n-1) is approximately 2^(4*n-3)*(2*n-1)!*sqrt(2)/((Pi^(2*n-1))*(2*n-1)). The approximation is quite good a(250) is of the order of 10^1181 and this formula is accurate to 238 digits. - Simon Plouffe, Jan 31 2007
G.f.: 1 / (1 - 1*3*x / (1 - 4*4*x / (1 - 5*7*x / (1 - 8*8*x / (1 - 9*11*x / ... ))))). - Michael Somos, May 12 2012
G.f.: 1/E(0) where E(k) = 1 - 3*x - 16*x*k*(2*k+1) - 16*x^2*(k+1)^2*(4*k+1)*(4*k+3)/E(k+1) (continued fraction, 1-step). - Sergei N. Gladkovskii, Sep 17 2012
G.f.: T(0)/(1-3*x), where T(k) = 1 - 16*x^2*(4*k+1)*(4*k+3)*(k+1)^2/( 16*x^2*(4*k+1)*(4*k+3)*(k+1)^2 - (32*x*k^2+16*x*k+3*x-1 )*(32*x*k^2+80*x*k+51*x -1)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2013
From Peter Bala, Mar 09 2015: (Start)
a(n) = (-1)^n*4^(2*n)*E(2*n,1/4), where E(n,x) denotes the n-th Euler polynomial.
O.g.f.: Sum_{n >= 0} 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 + x*(4*k + 1)^2) = 1 + 3*x + 57*x^2 + 2763*x^3 + ....
We appear to have the asymptotic expansion Pi/(2*sqrt(2)) - Sum {k = 0..n - 1} (-1)^floor(k/2)/(2*k + 1) ~ 1/(2*n) - 3/(2*n)^3 + 57/(2*n)^5 - 2763/(2*n)^7 + .... See A093954.
Bisection of A001586. See also A188458 and A212435. Second row of A235605 (read as a square array).
The expansion of exp( Sum_{n >= 1} a(n)*x^n/n ) appears to have integer coefficients. See A255883. (End)
From Peter Luschny, Mar 11 2015: (Start)
a(n) = ((-64)^n/((n+1/2)))*(B(2*n+1,7/8)-B(2*n+1,3/8)), B(n,x) Bernoulli polynomials.
a(n) = 2*(-16)^n*LerchPhi(-1, -2*n, 1/4).
a(n) = (-1)^n*Sum_{0..2*n} 2^k*C(2*n,k)*E(k), E(n) the Euler secant numbers A122045.
a(n) = (-4)^n*SKP(2*n,1/2) where SKP are the Swiss-Knife polynomials A153641.
a(n) = (-1)^n*2^(6*n+1)*(Zeta(-2*n,1/8) - Zeta(-2*n,5/8)), where Zeta(a,z) is the generalized Riemann zeta function. (End)
From Peter Bala, May 13 2017: (Start)
G.f.: 1/(1 + x - 4*x/(1 - 12*x/(1 + x - 40*x/(1 - 56*x/(1 + x - ... - 4*n(4*n - 3)*x/(1 - 4*n(4*n - 1)*x/(1 + x - ...
G.f.: 1/(1 + 9*x - 12*x/(1 - 4*x/(1 + 9*x - 56*x/(1 - 40*x/(1 + 9*x - ... - 4*n(4*n - 1)*x/(1 - 4*n(4*n - 3)*x/(1 + 9*x - .... (End)
From Peter Bala, Nov 08 2019: (Start)
a(n) = sqrt(2)*4^n*Integral_{x = 0..inf} x^(2*n)*cosh(Pi*x/2)/cosh(Pi*x) dx. Cf. A002437.
The L-series 1 + 1/3^(2*n+1) - 1/5^(2*n+1) - 1/7^(2*n+1) + + - - ... = sqrt(2)*(Pi/4)^(2*n+1)*a(n)/(2*n)! (see Shanks), which gives a(n) ~ (1/sqrt(2))*(2*n)!*(4/Pi)^(2*n+1). (End)

A000436 Generalized Euler numbers c(3,n).

Original entry on oeis.org

1, 8, 352, 38528, 7869952, 2583554048, 1243925143552, 825787662368768, 722906928498737152, 806875574817679474688, 1118389087843083461066752, 1884680130335630169428983808, 3794717805092151129643367268352
Offset: 0

Keywords

Examples

			G.f. = 1 + 8*x + 352*x^2 + 38528*x^3 + 7869952*x^4 + 2583554048*x^5 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 3 of A235605.
Bisections: A156177 and A156178.
Cf. A000191, A007289, overview in A349264.

Programs

  • Maple
    A000436 := proc(nmax) local a,n,an; a := [1] : n := 1 : while nops(a)< nmax do an := 1-sum(binomial(2*n,2*i)*3^(2*n-2*i)*(-1)^i*op(i+1,a),i=0..n-1) : a := [op(a),an*(-1)^n] ; n := n+1 ; od ; RETURN(a) ; end:
    A000436(10) ; # R. J. Mathar, Nov 19 2006
    a := n -> 2*(-144)^n*(Zeta(0,-2*n,1/6)-Zeta(0,-2*n,2/3)):
    seq(a(n), n=0..12); # Peter Luschny, Mar 11 2015
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (-1)^n*(1 - Sum[(-1)^i*Binomial[2n, 2i]*3^(2n - 2i)*a[i], {i, 0, n-1}]); Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jan 31 2012, after R. J. Mathar *)
    With[{nn=30},Take[CoefficientList[Series[Cos[x]/Cos[3x],{x,0,nn}], x] Range[ 0,nn]!,{1,-1,2}]] (* Harvey P. Dale, May 22 2012 *)
  • PARI
    x='x+O('x^66); v=Vec(serlaplace( cos(x) / cos(3*x) ) ); vector(#v\2,n,v[2*n-1]) \\ Joerg Arndt, Apr 27 2013
  • Sage
    from mpmath import mp, lerchphi
    mp.dps = 32; mp.pretty = True
    def A000436(n): return abs(3^(2*n)*2^(2*n+1)*lerchphi(-1,-2*n,1/3))
    [A000436(n) for n in (0..12)]  # Peter Luschny, Apr 27 2013
    

Formula

E.g.f.: cos(x) / cos(3*x) (even powers only).
For n>0, a(n) = A002114(n)*2^(2n+1) = (1/3)*A002112(n)*2^(2n+1). - Philippe Deléham, Jan 17 2004
a(n) = Sum_{k=0..n} (-1)^k*9^(n-k)*A086646(n,k). - Philippe Deléham, Oct 27 2006
(-1)^n a(n) = 1 - Sum_{i=0..n-1} (-1)^i*binomial(2n,2i)*3^(2n-2i)*a(i). - R. J. Mathar, Nov 19 2006
a(n) = P_{2n}(sqrt(3))/sqrt(3) (where the polynomials P_n() are defined in A155100). - N. J. A. Sloane, Nov 05 2009
E.g.f.: E(x) = cos(x)/cos(3*x) = 1 + 4*x^2/(G(0)-2*x^2); G(k) = (2*k+1)*(k+1) - 2*x^2 + 2*x^2*(2*k+1)*(k+1)/G(k+1); (continued fraction, Euler's kind, 1-step). - Sergei N. Gladkovskii, Jan 02 2012
G.f.: 1 / (1 - 2*4*x / (1 - 6*6*x / (1 - 8*10*x / (1 - 12*12*x / (1 - 14*16*x / (1 - 18*18*x / ...)))))). - Michael Somos, May 12 2012
a(n) = | 3^(2*n)*2^(2*n+1)*lerchphi(-1,-2*n,1/3) |. - Peter Luschny, Apr 27 2013
a(n) = (-1)^n*6^(2*n)*E(2*n,1/3), where E(n,x) denotes the n-th Euler polynomial. Calculation suggests that the expansion exp( Sum_{n >= 1} a(n)*x^n/n ) = exp( 8*x + 352*x^2/2 + 38528*x^3/3 + ... ) = 1 + 8*x + 208*x^2 + 14336*x^3 + ... has integer coefficients. Cf. A255882. - Peter Bala, Mar 10 2015
a(n) = 2*(-144)^n*(zeta(-2*n,1/6)-zeta(-2*n,2/3)), where zeta(a,z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
From Vaclav Kotesovec, May 05 2020: (Start)
For n>0, a(n) = (2*n)! * (zeta(2*n+1, 1/6) - zeta(2*n+1, 5/6)) / (sqrt(3)*Pi^(2*n+1)).
For n>0, a(n) = (-1)^(n+1) * 2^(2*n-1) * Bernoulli(2*n) * (zeta(2*n+1, 1/6) - zeta(2*n+1, 5/6)) / (Pi*sqrt(3)*zeta(2*n)). (End)
Conjecture: for each positive integer k, the sequence defined by a(n) (mod k) is eventually periodic with period dividing phi(k). For example, modulo 13 the sequence becomes [1, 8, 1, 9, 12, 10, 0, 8, 1, 9, 12, 10, 0, ...]; after the initial term 1 this appears to be a periodic sequence of period 6, a divisor of phi(13) = 12. - Peter Bala, Dec 11 2021

A103364 Matrix inverse of the Narayana triangle A001263.

Original entry on oeis.org

1, -1, 1, 2, -3, 1, -7, 12, -6, 1, 39, -70, 40, -10, 1, -321, 585, -350, 100, -15, 1, 3681, -6741, 4095, -1225, 210, -21, 1, -56197, 103068, -62916, 19110, -3430, 392, -28, 1, 1102571, -2023092, 1236816, -377496, 68796, -8232, 672, -36, 1, -27036487, 49615695, -30346380, 9276120, -1698732, 206388
Offset: 1

Author

Paul D. Hanna, Feb 02 2005

Keywords

Comments

The first column is A103365. The second column is A103366. Row sums are all zeros (for n > 1). Absolute row sums form A103367.
Let E(y) = Sum_{n >= 0} y^n/(n!*(n+1)!) = (1/sqrt(y))*BesselI(1,2*sqrt(y)). Then this triangle is the generalized Riordan array (1/E(y), y) with respect to the sequence n!*(n+1)! as defined in Wang and Wang. - Peter Bala, Aug 07 2013

Examples

			Rows begin:
        1;
       -1,        1;
        2,       -3,       1;
       -7,       12,      -6,       1;
       39,      -70,      40,     -10,     1;
     -321,      585,    -350,     100,   -15,     1;
     3681,    -6741,    4095,   -1225,   210,   -21,   1;
   -56197,   103068,  -62916,   19110, -3430,   392, -28,   1;
  1102571, -2023092, 1236816, -377496, 68796, -8232, 672, -36, 1;
  ...
From _Peter Bala_, Aug 09 2013: (Start)
The real zeros of the row polynomials R(n,x) appear to converge to zeros of E(alpha*x) as n increases, where alpha = -3.67049 26605 ... ( = -(A115369/2)^2).
Polynomial | Real zeros to 5 decimal places
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
R(5,x)     | 1, 3.57754, 3.81904
R(10,x)    | 1, 3.35230, 7.07532,  9.14395
R(15,x)    | 1, 3.35231, 7.04943, 12.09668, 15.96334
R(20,x)    | 1, 3.35231, 7.04943, 12.09107, 18.47845, 24.35255
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
Function   |
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
E(alpha*x) | 1, 3.35231, 7.04943, 12.09107, 18.47720, 26.20778, ...
Note: The n-th zero of E(alpha*x) may be calculated in Maple 17 using the instruction evalf( BesselJZeros(1,n)/ BesselJZeros(1,1))^2 ). (End)
		

Programs

  • Mathematica
    T[n_, 1]:= Last[Table[(-1)^(n - 1)*(CoefficientList[Series[x/BesselJ[1, 2*x], {x, 0, 1000}], x])[[k]]*(n)!*(n - 1)!, {k, 1, 2*n - 1, 2}]]
    T[n_, n_] := 1; T[2, 1] := -1; T[3, 1] := 2; T[n_, k_] := T[n, k] = T[n - 1, k - 1]*n*(n - 1)/(k*(k - 1)); Table[T[n, k], {n, 1, 50}, {k, 1, n}] // Flatten (* G. C. Greubel, Jan 04 2016 *)
    T[n_, n_] := 1; T[n_, 1]/;n>1 := T[n, 1] = -Sum[T[n, j], {j, 2, n}]; T[n_, k_]/;1Oliver Seipel, Jan 01 2025 *)
  • PARI
    T(n,k)=if(n
    				

Formula

From Peter Bala, Aug 07 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/(n!*(n+1)!) = (1/sqrt(y))* BesselI(1,2*sqrt(y)). Generating function: E(x*y)/E(y) = 1 + (-1 + x)*y/(1!*2!) + (2 - 3*x + x^2)*y^2/(2!*3!) + (-7 + 12*x - 6*x^2 + x^3)*y^3/(3!*4!) + .... The n-th power of this array has a generating function E(x*y)/E(y)^n. In particular, the matrix inverse A001263 has a generating function E(y)*E(x*y).
Recurrence equation for the row polynomials: R(n,x) = x^n - Sum_{k = 0..n-1} 1/(n-k+1)*binomial(n,k)*binomial(n+1,k+1) *R(k,x) with initial value R(0,x) = 1.
Let alpha denote the root of E(x) = 0 that is smallest in absolute magnitude. Numerically, alpha = -3.67049 26605 ... = -(A115369/2)^2. It appears that for arbitrary complex x we have lim_{n->oo} R(n,x)/R(n,0) = E(alpha*x). Cf. A055133, A086646 and A104033.
A stronger result than pointwise convergence may hold: the convergence may be uniform on compact subsets of the complex plane. This would explain the observation that the real zeros of the polynomials R(n,x) seem to converge to the zeros of E(alpha*x) as n increases. Some numerical examples are given below. (End)
From Werner Schulte, Jan 04 2017, corrected May 05 2025: (Start)
T(n,k) = T(n-1,k-1)*n*(n-1)/(k*(k-1)) for 1 < k <= n;
T(n,k) = T(n+1-k,1)*A001263(n,k) for 1 <= k <= n;
Sum_{k=1..n} T(n,k)*A000108(k) = 1 for n > 0. (End)

A002438 Multiples of Euler numbers.

Original entry on oeis.org

1, 5, 205, 22265, 4544185, 1491632525, 718181418565, 476768795646785, 417370516232719345, 465849831125196593045, 645702241048404020542525, 1088120580608731523115639305, 2190881346273790815462670984105
Offset: 1

Keywords

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 75.
  • Glaisher, J. W. L.; Messenger of Math., 28 (1898), 36-79, see esp. p. 51.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = A000364(n-1) * (9^(n-1) + 1)/2.
a(n+1) = Sum_{k = 0..n} A086646(n, k)*(-4)^k*9^(n-k). - Philippe Deléham, Aug 26 2005
From Peter Bala, Mar 13 2015: (Start)
a(n+1) = (-1)^n*6^(2*n)*E(2*n,1/6).
Assuming an offset of 0, the e.g.f. is cos(2*x)/cos(3*x) = 1 + 5*x + 205*x^2/2! + 22265*x^3/3! + 4544185*x^4/4! + ....
O.g.f. as a continued fraction: x/(1 - (3^2 - 2^2)*x/(1 - 6^2*x/(1 - (9^2 - 2^2)*x/(1 - 12^2*x/(1 - ... ))))) = x + 5*x^2 + 205*x^3 + 22265*x^4 + 4544185*x^5 + .... See Josuat-Vergès and Kim, p. 23. Cf. A086646.
The expansion of exp( Sum_{n >= 1} a(n+1)*x^n/n ) = exp( 5*x + 205*x^2/2 + 22265*x^3/3 + 4544185 *x^4/4 + ... ) appears to have integer coefficients. See A255884.
(End)
From Peter Bala, Nov 10 2015: (Start)
O.g.f. A(x) = 1/(1 + x - 6*x/(1 - 30*x/(1 + x - 84*x/(1 - 132*x/(1 + x - ... - 6*n*(6*n - 5)*x/(1 - 6*n*(6*n - 1)*x/(1 + x - ))))))).
A(x) = 1/(1 + 25*x - 30*x/(1 - 6*x/(1 + 25*x - 132*x/(1 - 84*x/(1 + 25*x - ... - 6*n*(6*n - 1)*x/(1 - 6*n*(6*n - 5)*x/(1 + 25*x - ))))))). (End)

Extensions

More terms from Herman P. Robinson
More terms from Jon E. Schoenfield, May 09 2010

A104033 Triangle, read by rows, equal to the matrix inverse of triangle A103327, where A103327(n,k) = binomial(2*n+1,2*k+1).

Original entry on oeis.org

1, -3, 1, 25, -10, 1, -427, 175, -21, 1, 12465, -5124, 630, -36, 1, -555731, 228525, -28182, 1650, -55, 1, 35135945, -14449006, 1782495, -104676, 3575, -78, 1, -2990414715, 1229758075, -151714563, 8912475, -305305, 6825, -105, 1, 329655706465, -135565467080, 16724709820, -982532408
Offset: 0

Author

Paul D. Hanna, Feb 28 2005

Keywords

Comments

Column 0 equals signed A009843 (expansion of x/cosh(x)). Row sums form signed A000182 (expansion of tanh(x)).
The matrix logarithm is L(n,k) = -(-1)^(n-k)*A000182(n-k)*A103327(n,k), where A000182 = tangent numbers.
Let E(y) = cosh(sqrt(y)) = 1 + 3*y/3! + 5*y^2/5! + 7*y^3/7! + .... so that 1/E(y) = 1 - 3*y/3! + 25*y^2/5! - 427*y^3/7! + .... Then this triangle is the generalized Riordan array (1/E(y), y) with respect to the sequence (2*n+1)! as defined in Wang and Wang. - Peter Bala, Aug 06 2013

Examples

			Rows begin:
1;
-3, 1;
25, -10, 1;
-427, 175, -21, 1;
12465, -5124, 630, -36, 1;
-555731 ,228525, -28182, 1650, -55, 1;
35135945, -14449006, 1782495, -104676, 3575, -78, 1;
-2990414715, 1229758075, -151714563, 8912475, -305305, 6825, -105, 1;
329655706465, -135565467080, 16724709820, -982532408, 33669350, -754936, 11900, -136, 1; ...
From _Peter Bala_, Aug 06 2013: (Start)
The real zeros of the row polynomials R(n,x) seem to converge to the even squares as n increases.
Polynomial |        Real zeros to 6 decimal places
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
R(5,x)     | 3.999986
R(10,x)    | 4.000000, 15.999978
R(15,x)    | 4.000000, 16.000000, 35.999992, 64.414273, 76.998346
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
(End)
		

Crossrefs

Programs

  • PARI
    {T(n,k) = if(n=j, binomial(2*m-1,2*j-1))))^-1)[n+1,k+1])}
    for(n=0,10,for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    {T(n,k) = binomial(2*n+1,2*k+1) * polcoeff(1/cosh(x+x*O(x^(2*n))), 2*n-2*k) * (2*n-2*k)!}
    for(n=0,10,for(k=0,n, print1(T(n,k),", "));print(""))

Formula

Column k: Sum_{j=0..n} C(2*n+1, 2*j+1) * T(j, k) = 0 (n>k), or 1 (n=k).
Row n: Sum_{j=0..n} T(n, j) * C(2*j+1, 2*k+1) = 0 (k
Sum_{k=0..n} T(n, k) * 4^k = 1 for n >= 0.
T(n, k) = (-1)^(n-k)*A000364(n-k)*A103327(n, k), where A000364 = Euler numbers.
Sum_{k=0..n} (-1)^(n-k)*T(n, k) = A002084(n). - Philippe Deléham, Aug 27 2005
From Peter Bala, Aug 06 2013: (Start)
Generating function: 1/sqrt(x)*sinh(sqrt(x)*t)/cosh(t) = t + (-3 + x)*t^3/3! + (25 - 10*x + x^2)*t^5/5! + ....
Recurrence equation for the row polynomials: R(n,x) = x^n - Sum_{k = 0..n-1} binomial(2*n+1,2*k+1)*R(k,x) with initial value R(0,x) = 1.
It appears that for arbitrary nonzero complex x we have
lim_{n -> inf} R(n,x^2)/R(n,0) = (1/(Pi/2*x))*sin(Pi/2*x).
A stronger result than pointwise convergence may hold: the convergence may be uniform on compact subsets of the complex plane. This would explain the observation that the real zeros of the polynomials R(n,x) seem to converge to the even squares 4, 16, 36, ... as n increases. Some numerical examples are given below. Cf. A055133, A086646 and A103364.
If p = 2*n + 1 is a prime then all the entries in row n are divisible by p, apart from T(n,n) = 1. Thus the row sum is congruent to 1 modulo p.
Row sums R(n,1) = (-1)^n*A000182(n+1).
R(n,4) = 1; R(n,16) = (1/2)*( 3^(2*n+1) - 1 ) = A096053(n);
R(n,36) = (1/3)*( 5^(2*n+1) - 3^(2*n+1) + 1 );
R(n,64) = (1/4)*( 7^(2*n+1) - 5^(2*n+1) + 3^(2*n+1) - 1 ). (End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007
Showing 1-10 of 12 results. Next