A109449
Triangle read by rows, T(n,k) = binomial(n,k)*A000111(n-k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 5, 8, 6, 4, 1, 16, 25, 20, 10, 5, 1, 61, 96, 75, 40, 15, 6, 1, 272, 427, 336, 175, 70, 21, 7, 1, 1385, 2176, 1708, 896, 350, 112, 28, 8, 1, 7936, 12465, 9792, 5124, 2016, 630, 168, 36, 9, 1, 50521, 79360, 62325, 32640, 12810, 4032, 1050, 240, 45, 10, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
5, 8, 6, 4, 1;
16, 25, 20, 10, 5, 1;
61, 96, 75, 40, 15, 6, 1;
272, 427, 336, 175, 70, 21, 7, 1;
1385, 2176, 1708, 896, 350, 112, 28, 8, 1;
7936, 12465, 9792, 5124, 2016, 630, 168, 36, 9, 1;
50521, 79360, 62325, 32640, 12810, 4032, 1050, 240, 45, 10, 1; ...
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Peter Luschny, The Swiss-Knife polynomials.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
-
a109449 n k = a109449_row n !! k
a109449_row n = zipWith (*)
(a007318_row n) (reverse $ take (n + 1) a000111_list)
a109449_tabl = map a109449_row [0..]
-- Reinhard Zumkeller, Nov 02 2013
-
f:= func< n,x | Evaluate(BernoulliPolynomial(n+1), x) >;
A109449:= func< n,k | k eq n select 1 else 2^(2*n-2*k+1)*Binomial(n,k)*Abs(f(n-k,3/4) - f(n-k,1/4) + f(n-k,1) - f(n-k,1/2))/(n-k+1) >;
[A109449(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jul 10 2025
-
From Peter Luschny, Jul 10 2009, edited Jun 06 2022: (Start)
A109449 := (n,k) -> binomial(n, k)*A000111(n-k):
seq(print(seq(A109449(n, k), k=0..n)), n=0..9);
B109449 := (n,k) -> 2^(n-k)*binomial(n, k)*abs(euler(n-k, 1/2)+euler(n-k, 1)) -`if`(n-k=0, 1, 0): seq(print(seq(B109449(n, k), k=0..n)), n=0..9);
R109449 := proc(n, k) option remember; if k = 0 then A000111(n) else R109449(n-1, k-1)*n/k fi end: seq(print(seq(R109449(n, k), k=0..n)), n=0..9);
E109449 := proc(n) add(binomial(n, k)*euler(k)*((x+1)^(n-k)+ x^(n-k)), k=0..n) -x^n end: seq(print(seq(abs(coeff(E109449(n), x, k)), k=0..n)), n=0..9);
sigma := n -> ifelse(n=0, 1, [1,1,0,-1,-1,-1,0,1][n mod 8 + 1]/2^iquo(n-1,2)-1):
L109449 := proc(n) add(add((-1)^v*binomial(k, v)*(x+v+1)^n*sigma(k), v=0..k), k=0..n) end: seq(print(seq(abs(coeff(L109449(n), x, k)), k=0..n)), n=0..9);
X109449 := n -> n!*coeff(series(exp(x*t)*(sech(t)+tanh(t)), t, 24), t, n): seq(print(seq(abs(coeff(X109449(n), x, k)), k=0..n)), n=0..9);
(End)
-
lim = 10; s = CoefficientList[Series[(1 + Sin[x])/Cos[x], {x, 0, lim}], x] Table[k!, {k, 0, lim}]; Table[Binomial[n, k] s[[n - k + 1]], {n, 0, lim}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 24 2015, after Jean-François Alcover at A000111 *)
T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 27 2019 *)
-
A109449(n,k)=binomial(n,k)*if(n>k,2*abs(polylog(k-n,I)),1) \\ M. F. Hasler, Oct 05 2017
-
R = PolynomialRing(ZZ, 'x')
@CachedFunction
def skp(n, x) :
if n == 0 : return 1
return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
def A109449_row(n):
x = R.gen()
return [abs(c) for c in list(skp(n,x)-skp(n,x-1)+x^n)]
for n in (0..10) : print(A109449_row(n)) # Peter Luschny, Jul 22 2012
Edited, formula corrected, typo T(9,4)=2016 (before 2816) fixed by
Peter Luschny, Jul 10 2009
A086645
Triangle read by rows: T(n, k) = binomial(2n, 2k).
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 28, 70, 28, 1, 1, 45, 210, 210, 45, 1, 1, 66, 495, 924, 495, 66, 1, 1, 91, 1001, 3003, 3003, 1001, 91, 1, 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1, 1, 153, 3060, 18564, 43758, 43758, 18564, 3060, 153, 1, 1, 190, 4845, 38760
Offset: 0
From _Peter Bala_, Oct 23 2008: (Start)
The triangle begins
n\k|..0.....1.....2.....3.....4.....5.....6
===========================================
0..|..1
1..|..1.....1
2..|..1.....6.....1
3..|..1....15....15.....1
4..|..1....28....70....28.....1
5..|..1....45...210...210....45.....1
6..|..1....66...495...924...495....66.....1
...
(End)
From _Peter Bala_, Aug 06 2013: (Start)
Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n)! the column generating functions begin
1st col: cosh(sqrt(y)) = 1 + y/2! + y^2/4! + y^3/6! + y^4/8! + ....
2nd col: 1/2!*y*cosh(sqrt(y)) = y/2! + 6*y^2/4! + 15*y^3/6! + 28*y^4/8! + ....
3rd col: 1/4!*y^2*cosh(sqrt(y)) = y^2/4! + 15*y^3/6! + 70*y^4/8! + 210*y^5/10! + .... (End)
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.
- Indranil Ghosh, Rows 0.. 120 of triangle, flattened
- F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices arXiv:0809.5123 [math.CO], 2008.
- H. Chan, S. Cooper and P. Toh, The 26th power of Dedekind's eta function Advances in Mathematics, 207 (2006) 532-543.
- T. Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras, 2012.
- T. Copeland, Skipping over Dimensions, Juggling Zeros in the Matrix, 2020.
- E. Lucas, Théorie des fonctions numériques simplement périodiques, Baltimore, 1878. See page 145 equation (153).
- W. Wang and T. Wang, Generalized Riordan array, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
-
/* As triangle: */ [[Binomial(2*n, 2*k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 14 2016
-
A086645:=(n,k)->binomial(2*n,2*k): seq(seq(A086645(n,k),k=0..n),n=0..12);
-
Table[Binomial[2 n, 2 k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 13 2016 *)
-
create_list(binomial(2*n,2*k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
{T(n, k) = binomial(2*n, 2*k)};
-
{T(n, k) = sum( i=0, min(k, n-k), 4^i * binomial(n, 2*i) * binomial(n - 2*i, k-i))}; /* Michael Somos, May 26 2005 */
A000667
Boustrophedon transform of all-1's sequence.
Original entry on oeis.org
1, 2, 4, 9, 24, 77, 294, 1309, 6664, 38177, 243034, 1701909, 13001604, 107601977, 959021574, 9157981309, 93282431344, 1009552482977, 11568619292914, 139931423833509, 1781662223749884, 23819069385695177, 333601191667149054, 4884673638115922509
Offset: 0
...............1..............
............1..->..2..........
.........4..<-.3...<-..1......
......1..->.5..->..8...->..9..
- Alois P. Heinz, Table of n, a(n) for n = 0..485 (first 101 terms from T. D. Noe)
- C. K. Cook, M. R. Bacon, and R. A. Hillman, Higher-order Boustrophedon transforms for certain well-known sequences, Fib. Q., 55(3) (2017), 201-208.
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54 (Abstract, pdf, ps).
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform.
Absolute value of pairwise sums of
A009337.
-
a000667 n = if x == 1 then last xs else x
where xs@(x:_) = a227862_row n
-- Reinhard Zumkeller, Nov 01 2013
-
With[{nn=30},CoefficientList[Series[Exp[x](Tan[x]+Sec[x]),{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Nov 28 2011 *)
t[, 0] = 1; t[n, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k];
a[n_] := t[n, n];
Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
x='x+O('x^33); Vec(serlaplace( exp(x)*(tan(x) + 1/cos(x)) ) ) \\ Joerg Arndt, Jul 30 2016
-
from itertools import islice, accumulate
def A000667_gen(): # generator of terms
blist = tuple()
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=1)))[-1]
A000667_list = list(islice(A000667_gen(),20)) # Chai Wah Wu, Jun 11 2022
-
# Algorithm of L. Seidel (1877)
def A000667_list(n) :
R = []; A = {-1:0, 0:0}
k = 0; e = 1
for i in range(n) :
Am = 1
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
# print [A[z] for z in (-i//2..i//2)]
R.append(A[e*i//2])
return R
A000667_list(10) # Peter Luschny, Jun 02 2012
A065547
Triangle of Salie numbers.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 3, -3, 1, 0, -17, 17, -6, 1, 0, 155, -155, 55, -10, 1, 0, -2073, 2073, -736, 135, -15, 1, 0, 38227, -38227, 13573, -2492, 280, -21, 1, 0, -929569, 929569, -330058, 60605, -6818, 518, -28, 1, 0, 28820619, -28820619, 10233219, -1879038, 211419, -16086, 882, -36, 1, 0, -1109652905
Offset: 0
Triangle begins:
1;
0, 1;
0, -1, 1;
0, 3, -3, 1;
0, -17, 17, -6, 1;
0, 155, -155, 55, -10, 1;
...
- D. Dumont and J. Zeng, Polynomes d'Euler et les fractions continues de Stieltjes-Rogers, Ramanujan J. 2 (1998) 3, 387-410.
- J. M. Hammersley, An undergraduate exercise in manipulation, Math. Scientist, 14 (1989), 1-23.
- Ira M. Gessel and X. G. Viennot, Determinants, paths and plane partitions, 1989, p. 27, eqn 12.1.
- A. F. Horadam, Generation of Genocchi polynomials of first order by recurrence relation, Fib. Quart. 2 (1992), 239-243.
Sum_{k>=0} (-1)^(n+k)*2^(n-k)*T(n, k) =
A005647(n). Sum_{k>=0} (-1)^(n+k)*2^(2n-k)*T(n, k) =
A000795(n). Sum_{k>=0} (-1)^(n+k)*T(n, k) =
A006846(n), where
A006846 = Hammersley's polynomial p_n(1). -
Philippe Deléham, Feb 26 2004.
Column sequences (without leading zeros) give, for k=1..10:
A065547 (twice),
A095652-9.
See
A085707 for unsigned and transposed version.
See
A098435 for negative values of n, k.
-
h[n_, x_] := Sum[c[k]*x^k, {k, 0, n}]; eq[n_] := SolveAlways[h[n, x*(x - 1)] == EulerE[2*n, x], x]; row[n_] := Table[c[k], {k, 0, n}] /. eq[n] // First; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 02 2013 *)
-
{ S2(n, k) = (1/k!)*sum(i=0,k,(-1)^(k-i)*binomial(k,i)*i^n) }{ Eu(n) = sum(m=0,n,(-1)^m*m!*S2(n+1,m+1)*(-1)^floor(m/4)*2^-floor(m/2)*((m+1)%4!=0)) } T(n,k)=if(nRalf Stephan
A003701
Expansion of e.g.f. exp(x)/cos(x).
Original entry on oeis.org
1, 1, 2, 4, 12, 36, 152, 624, 3472, 18256, 126752, 814144, 6781632, 51475776, 500231552, 4381112064, 48656756992, 482962852096, 6034272215552, 66942218896384, 929327412759552, 11394877025289216, 174008703107274752, 2336793875186479104, 38928735228629389312
Offset: 0
G.f. = 1 + x + 2*x^2 + 4*x^3 + 12*x^4 + 36*x^5 + 152*x^6 + 624*x^7 + 3472*x^8 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..485 (first 101 terms from T. D. Noe)
- T. Chow, Fair permutations and random k-sets, Problem 11523, Amer. Math. Monthly 117 (October 2010), 741; solution by Jim Simons, Amer. Math. Monthly 119 (November 2012), 801-803.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
-
m:=50; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x)/Cos(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 14 2018
-
G(x):= exp(x)*sec(x): f[0]:=G(x): for n from 1 to 54 do f[n]:= diff(f[n-1],x) od: x:=0: seq(f[n], n=0..22); # Zerinvary Lajos, Apr 05 2009
# second Maple program:
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
end:
a:= n-> add(`if`(j::odd, 0, b(j, 0)*binomial(n, j)), j=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, May 12 2024
-
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ x ] / Cos[x], {x, 0, n}]] (* Michael Somos, Jun 06 2012 *)
-
x='x+O('x^66); Vec(serlaplace(exp(x)/cos(x))) \\ Joerg Arndt, May 07 2013
Extended and reformatted 03/97.
A086646
Triangle, read by rows, of numbers T(n,k), 0 <= k <= n, given by T(n,k) = A000364(n-k)*binomial(2*n, 2*k).
Original entry on oeis.org
1, 1, 1, 5, 6, 1, 61, 75, 15, 1, 1385, 1708, 350, 28, 1, 50521, 62325, 12810, 1050, 45, 1, 2702765, 3334386, 685575, 56364, 2475, 66, 1, 199360981, 245951615, 50571521, 4159155, 183183, 5005, 91, 1, 19391512145, 23923317720, 4919032300, 404572168, 17824950, 488488, 9100, 120, 1
Offset: 0
Triangle begins:
1;
1, 1;
5, 6, 1;
61, 75, 15, 1;
1385, 1708, 350, 28, 1;
50521, 62325, 12810, 1050, 45, 1;
...
From _Peter Bala_, Aug 06 2013: (Start)
Polynomial | Real zeros to 5 decimal places
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
R(5,-x) | 1, 9.18062, 13.91597
R(10,-x) | 1, 9.00000, 25.03855, 37.95073
R(15,-x) | 1, 9.00000, 25.00000, 49.00895, 71.83657
R(20,-x) | 1, 9.00000, 25.00000, 49.00000, 81.00205, 114.87399
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
(End)
- Alois P. Heinz, Rows n = 0..140, flattened
- Tom Copeland, Skipping over Dimensions, Juggling Zeros in the Matrix, 2020.
- W. Wang and T. Wang, Generalized Riordan array, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
-
A086646 := proc(n,k)
if k < 0 or k > n then
0 ;
else
A000364(n-k)*binomial(2*n,2*k) ;
end if;
end proc: # R. J. Mathar, Mar 14 2013
-
R[0, _] = 1;
R[n_, x_] := R[n, x] = x^n - Sum[(-1)^(n-k) Binomial[2n, 2k] R[k, x], {k, 0, n-1}];
Table[CoefficientList[R[n, x], x], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 19 2019 *)
T[0, 0] := 1; T[n_, 0] := -Sum[(-1)^k T[n, k], {k, 1, n}]; T[n_, k_]/;0Oliver Seipel, Jan 11 2025 *)
A062272
Boustrophedon transform of (n+1) mod 2.
Original entry on oeis.org
1, 1, 2, 5, 12, 41, 152, 685, 3472, 19921, 126752, 887765, 6781632, 56126201, 500231552, 4776869245, 48656756992, 526589630881, 6034272215552, 72989204937125, 929327412759552, 12424192360405961, 174008703107274752
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54 (Abstract, pdf, ps).
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
-
a062272 n = sum $ zipWith (*) (a109449_row n) $ cycle [1,0]
-- Reinhard Zumkeller, Nov 03 2013
-
s[n_] = Mod[n+1, 2]; t[n_, 0] := s[n]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
from itertools import accumulate, islice
def A062272_gen(): # generator of terms
blist, m = tuple(), 0
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=(m := 1-m))))[-1]
A062272_list = list(islice(A062272_gen(),40)) # Chai Wah Wu, Jun 12 2022
-
# Generalized algorithm of L. Seidel (1877)
def A062272_list(n) :
R = []; A = {-1:0, 0:0}
k = 0; e = 1
for i in range(n) :
Am = 1 if e == 1 else 0
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
R.append(A[e*i//2])
return R
A062272_list(10) # Peter Luschny, Jun 02 2012
A005647
Salié numbers.
Original entry on oeis.org
1, 1, 3, 19, 217, 3961, 105963, 3908059, 190065457, 11785687921, 907546301523, 84965187064099, 9504085749177097, 1251854782837499881, 191781185418766714683, 33810804270120276636139, 6796689405759438360407137, 1545327493049348356667631841
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 87, Problem 32.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
nmax = 17; se = Series[ Cosh[x]/Cos[x], {x, 0, 2*nmax}]; a[n_] := Coefficient[se, x, 2*n]*(2*n)!/2^n; Table[a[n], {n, 0, nmax}](* Jean-François Alcover, May 11 2012 *)
Join[{1},Table[SeriesCoefficient[Series[1/(1+ContinuedFractionK[Floor[(k^2+ 1)/2]*x*-1,1,{k,1,20}]),{x,0,20}],n],{n,1,20}]](* Benedict W. J. Irwin, Feb 10 2016 *)
A085707
Triangular array A065547 unsigned and transposed.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 17, 17, 0, 1, 10, 55, 155, 155, 0, 1, 15, 135, 736, 2073, 2073, 0, 1, 21, 280, 2492, 13573, 38227, 38227, 0, 1, 28, 518, 6818, 60605, 330058, 929569, 929569, 0, 1, 36, 882, 16086, 211419, 1879038, 10233219, 28820619
Offset: 0
1;
1, 0;
1, 1, 0;
1, 3, 3, 0;
1, 6, 17, 17, 0;
1, 10, 55, 155, 155, 0;
...
- Louis Comtet, Analyse Combinatoire, PUF, 1970, Tome 2, pp. 98-99.
Row sums Sum_{k>=0} T(n, k) =
A006846(n), values of Hammersley's polynomial p_n(1).
Sum_{k>=0} 2^k*T(n, k) =
A005647(n), Salie numbers.
Sum_{k>=0} 3^k*T(n, k) =
A094408(n).
Sum_{k>=0} 4^k*T(n, k) =
A000364(n), Euler numbers.
-
h[n_, x_] := Sum[c[k]*x^k, {k, 0, n}]; eq[n_] := SolveAlways[h[n, x*(x-1)] == EulerE[2*n, x], x]; row[n_] := Table[c[k], {k, 0, n}] /. eq[n] // First // Abs // Reverse; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 02 2013 *)
A296628
Numerators of coefficients in expansion of e.g.f. tan(x)/tanh(x) (even powers only).
Original entry on oeis.org
1, 4, 16, 1408, 13568, 606208, 61878272, 1956380672, 21143027712, 348742016303104, 279852224852525056, 5217315235815227392, 118411884225053589504, 842233813811702133686272, 4096134057254358725165056, 3447514330976633343761929207808, 44711197753944482628093599547392
Offset: 0
tan(x)/tanh(x) = 1 + (4/3)*x^2/2! + (16/3)*x^4/4! + (1408/21)*x^6/6! + (13568/9)*x^8/8! + ...
-
m:=50; R:=PowerSeriesRing(Rationals(), m);
b:= Coefficients(R!(Laplace( Tan(x)/Tanh(x) )));
[Numerator( b[2*n-1] ): n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Jan 31 2022
-
nmax = 16; Numerator[Table[(CoefficientList[Series[Tan[x]/Tanh[x], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]]
-
[numerator( factorial(2*n)*( tan(x)/tanh(x) ).series(x, 2*n+3).list()[2*n] ) for n in (0..40)] # G. C. Greubel, Jan 31 2022
Showing 1-10 of 18 results.
Next
Comments