cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A086645 Triangle read by rows: T(n, k) = binomial(2n, 2k).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 28, 70, 28, 1, 1, 45, 210, 210, 45, 1, 1, 66, 495, 924, 495, 66, 1, 1, 91, 1001, 3003, 3003, 1001, 91, 1, 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1, 1, 153, 3060, 18564, 43758, 43758, 18564, 3060, 153, 1, 1, 190, 4845, 38760
Offset: 0

Views

Author

Philippe Deléham, Jul 26 2003

Keywords

Comments

Terms have the same parity as those of Pascal's triangle.
Coefficients of polynomials (1/2)*((1 + x^(1/2))^(2n) + (1 - x^(1/2))^(2n)).
Number of compositions of 2n having k parts greater than 1; example: T(3, 2) = 15 because we have 4+2, 2+4, 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2, 3+3. - Philippe Deléham, May 18 2005
Number of binary words of length 2n - 1 having k runs of consecutive 1's; example: T(3,2) = 15 because we have 00101, 01001, 01010, 01011, 01101, 10001, 10010, 10011, 10100, 10110, 10111, 11001, 11010, 11011, 11101. - Philippe Deléham, May 18 2005
Let M_n be the n X n matrix M_n(i, j) = T(i, j-1); then for n > 0, det(M_n) = A000364(n), Euler numbers; example: det([1, 1, 0, 0; 1, 6, 1, 0; 1, 15, 15, 1; 1, 28, 70, 28 ]) = 1385 = A000364(4). - Philippe Deléham, Sep 04 2005
Equals ConvOffsStoT transform of the hexagonal numbers, A000384: (1, 6, 15, 28, 45, ...); e.g., ConvOffs transform of (1, 6, 15, 28) = (1, 28, 70, 28, 1). - Gary W. Adamson, Apr 22 2008
From Peter Bala, Oct 23 2008: (Start)
Let C_n be the root lattice generated as a monoid by {+-2*e_i: 1 <= i <= n; +-e_i +- e_j: 1 <= i not equal to j <= n}. Let P(C_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(C_n) [Ardila et al.]. See A127674 for (a signed version of) the corresponding array of f-vectors for these type C_n polytopes. See A008459 for the array of h-vectors for type A_n polytopes and A108558 for the array of h-vectors associated with type D_n polytopes.
The Hilbert transform of this triangle is A142992 (see A145905 for the definition of this term).
(End)
Diagonal sums: A108479. - Philippe Deléham, Sep 08 2009
Coefficients of Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
Generalized Narayana triangle for 4^n (or cosh(2x)). - Paul Barry, Sep 28 2010
Coefficients of the matrix inverse appear to be T^(-1)(n,k) = (-1)^(n+k)*A086646(n,k). - R. J. Mathar, Mar 12 2013
Let E(y) = Sum_{n>=0} y^n/(2*n)! = cosh(sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence (2*n)! as defined in Wang and Wang. Cf. A103327. - Peter Bala, Aug 06 2013
Row 6, (1,66,495,924,495,66,1), plays a role in expansions of powers of the Dedekind eta function. See the Chan link, p. 534, and A034839. - Tom Copeland, Dec 12 2016

Examples

			From _Peter Bala_, Oct 23 2008: (Start)
The triangle begins
n\k|..0.....1.....2.....3.....4.....5.....6
===========================================
0..|..1
1..|..1.....1
2..|..1.....6.....1
3..|..1....15....15.....1
4..|..1....28....70....28.....1
5..|..1....45...210...210....45.....1
6..|..1....66...495...924...495....66.....1
...
(End)
From _Peter Bala_, Aug 06 2013: (Start)
Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n)! the column generating functions begin
1st col: cosh(sqrt(y)) = 1 + y/2! + y^2/4! + y^3/6! + y^4/8! + ....
2nd col: 1/2!*y*cosh(sqrt(y)) = y/2! + 6*y^2/4! + 15*y^3/6! + 28*y^4/8! + ....
3rd col: 1/4!*y^2*cosh(sqrt(y)) = y^2/4! + 15*y^3/6! + 70*y^4/8! + 210*y^5/10! + .... (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.

Crossrefs

Cf. A008459, A108558, A127674, A142992. - Peter Bala, Oct 23 2008
Cf. A103327 (binomial(2n+1, 2k+1)), A103328 (binomial(2n, 2k+1)), A091042 (binomial(2n+1, 2k)). -Wolfdieter Lang, Jan 06 2013
Cf. A086646 (unsigned matrix inverse), A103327.
Cf. A034839.

Programs

  • Magma
    /* As triangle: */ [[Binomial(2*n, 2*k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 14 2016
  • Maple
    A086645:=(n,k)->binomial(2*n,2*k): seq(seq(A086645(n,k),k=0..n),n=0..12);
  • Mathematica
    Table[Binomial[2 n, 2 k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 13 2016 *)
  • Maxima
    create_list(binomial(2*n,2*k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    {T(n, k) = binomial(2*n, 2*k)};
    
  • PARI
    {T(n, k) = sum( i=0, min(k, n-k), 4^i * binomial(n, 2*i) * binomial(n - 2*i, k-i))}; /* Michael Somos, May 26 2005 */
    

Formula

T(n, k) = (2*n)!/((2*(n-k))!*(2*k)!) row sums = A081294. COLUMNS: A000012, A000384
Sum_{k>=0} T(n, k)*A000364(k) = A000795(n) = (2^n)*A005647(n).
Sum_{k>=0} T(n, k)*2^k = A001541(n). Sum_{k>=0} T(n, k)*3^k = 2^n*A001075(n). Sum_{k>=0} T(n, k)*4^k = A083884(n). - Philippe Deléham, Feb 29 2004
O.g.f.: (1 - z*(1+x))/(x^2*z^2 - 2*x*z*(1+z) + (1-z)^2) = 1 + (1 + x)*z +(1 + 6*x + x^2)*z^2 + ... . - Peter Bala, Oct 23 2008
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A081294(n), A001541(n), A090965(n), A083884(n), A099140(n), A099141(n), A099142(n), A165224(n), A026244(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 08 2009
Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
From Paul Barry, Sep 28 2010: (Start)
G.f.: 1/(1-x-x*y-4*x^2*y/(1-x-x*y)) = (1-x*(1+y))/(1-2*x*(1+y)+x^2*(1-y)^2);
E.g.f.: exp((1+y)*x)*cosh(2*sqrt(y)*x);
T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2*(k-j))*4^(k-j). (End)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-1) - T(n-2,k) - T(n-2,k-2), with T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 26 2013
From Peter Bala, Sep 22 2021: (Start)
n-th row polynomial R(n,x) = (1-x)^n*T(n,(1+x)/(1-x)), where T(n,x) is the n-th Chebyshev polynomial of the first kind. Cf. A008459.
R(n,x) = Sum_{k = 0..n} binomial(n,2*k)*(4*x)^k*(1 + x)^(n-2*k).
R(n,x) = n*Sum_{k = 0..n} (n+k-1)!/((n-k)!*(2*k)!)*(4*x)^k*(1-x)^(n-k) for n >= 1. (End)

A000795 Salié numbers: expansion of cosh x / cos x = Sum_{n >= 0} a(n)*x^(2n)/(2n)!.

Original entry on oeis.org

1, 2, 12, 152, 3472, 126752, 6781632, 500231552, 48656756992, 6034272215552, 929327412759552, 174008703107274752, 38928735228629389312, 10255194381004799025152, 3142142941901073853366272, 1107912434323301224813002752, 445427836895850552387642130432
Offset: 0

Views

Author

Keywords

Comments

Named after the German mathematician Hans Salié (1902-1978). - Amiram Eldar, Jun 10 2021

Examples

			cosh x / cos x = Sum_{n>=0} a(n)*x^(2n)/(2n)! = 1 + x^2 + (1/2)*x^4 + (19/90)*x^6 + (31/360)*x^8 + (3961/113400)*x^10 + ...
G.f. = 1 + 2*x + 12*x^2 + 252*x^3 + 3472*x^4 + 126752*x^5 + 6781632*x^6 + ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 86, Problem 32.
  • Hans Salié, Arithmetische Eigenschaften der Koeffizienten einer speziellen Hurwitzschen Potenzreihe, Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Natur. Reihe 12 (1963), pp. 617-618.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A005647(n) = a(n)/2^n.

Programs

  • Maple
    A000795 := proc(n)
            (2*n)!*coeftayl( cosh(x)/cos(x),x=0,2*n) ;
    end proc: # R. J. Mathar, Oct 20 2011
  • Mathematica
    max = 16; se = Series[ Cosh[x] / Cos[x], {x, 0, 2*max} ]; a[n_] := SeriesCoefficient[ se, 2*n ]*(2*n)!; Table[ a[n], {n, 0, max} ] (* Jean-François Alcover, Apr 02 2012 *)
    With[{nn=40},Take[CoefficientList[Series[Cosh[x]/Cos[x],{x,0,nn}],x] Range[ 0,nn]!,{1,-1,2}]] (* Harvey P. Dale, May 11 2012 *)
    a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ Cosh[ x] / Cos[ x], {x, 0, m}]]]; (* Michael Somos, Aug 15 2015 *)
  • Sage
    # Generalized algorithm of L. Seidel (1877)
    def A000795_list(n) :
        R = []; A = {-1:0, 0:0}
        k = 0; e = 1
        for i in range(n) :
            Am = 1 if e == 1 else 0
            A[k + e] = 0
            e = -e
            for j in (0..i) :
                Am += A[k]
                A[k] = Am
                k += e
            if e == -1 : R.append(A[-i//2])
        return R
    A000795_list(10) # Peter Luschny, Jun 02 2012

Formula

a(n) = Sum_{k=0..n} binomial(2n, 2k)*A000364(n-k). - Philippe Deléham, Dec 16 2003
a(n) = Sum_{k>=0} (-1)^(n+k)*2^(2n-k)*A065547(n, k). - Philippe Deléham, Feb 26 2004
a(n) = Sum_{k>=0} A086646(n, k). - Philippe Deléham, Feb 26 2004
G.f.: 1 / (1 - (1^2+1)*x / (1 - 2^2*x / (1 - (3^2+1)*x / (1 - 4^2*x / (1 - (5^2+1)*x / (1 - 6^2*x / ...)))))). - Michael Somos, May 12 2012
G.f.: Q(0)/(1-2*x), where Q(k) = 1 - 8*x^2*(2*k^2+2*k+1)*(k+1)^2/( 8*x^2*(2*k^2+2*k+1)*(k+1)^2 - (1 - 8*x*k^2 - 4*x*k -2*x)*(1 - 8*x*k^2 - 20*x*k -14*x)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
a(n) ~ (2*n)! * 2^(2*n+2) * cosh(Pi/2) / Pi^(2*n+1). - Vaclav Kotesovec, Mar 08 2014
a(n) = 1 - Sum_{k=1..n} (-1)^k * binomial(2*n,2*k) * a(n-k). - Ilya Gutkovskiy, Mar 09 2022

A065547 Triangle of Salie numbers.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 3, -3, 1, 0, -17, 17, -6, 1, 0, 155, -155, 55, -10, 1, 0, -2073, 2073, -736, 135, -15, 1, 0, 38227, -38227, 13573, -2492, 280, -21, 1, 0, -929569, 929569, -330058, 60605, -6818, 518, -28, 1, 0, 28820619, -28820619, 10233219, -1879038, 211419, -16086, 882, -36, 1, 0, -1109652905
Offset: 0

Views

Author

Wouter Meeussen, Dec 02 2001

Keywords

Comments

Coefficients of polynomials H(n,x) related to Euler polynomials through H(n,x(x-1)) = E(2n,x).

Examples

			Triangle begins:
 1;
 0,   1;
 0,  -1,    1;
 0,   3,   -3,  1;
 0, -17,   17, -6,   1;
 0, 155, -155, 55, -10, 1;
 ...
		

Crossrefs

Sum_{k>=0} (-1)^(n+k)*2^(n-k)*T(n, k) = A005647(n). Sum_{k>=0} (-1)^(n+k)*2^(2n-k)*T(n, k) = A000795(n). Sum_{k>=0} (-1)^(n+k)*T(n, k) = A006846(n), where A006846 = Hammersley's polynomial p_n(1). - Philippe Deléham, Feb 26 2004.
Column sequences (without leading zeros) give, for k=1..10: A065547 (twice), A095652-9.
See A085707 for unsigned and transposed version.
See A098435 for negative values of n, k.

Programs

  • Mathematica
    h[n_, x_] := Sum[c[k]*x^k, {k, 0, n}]; eq[n_] := SolveAlways[h[n, x*(x - 1)] == EulerE[2*n, x], x]; row[n_] := Table[c[k], {k, 0, n}] /. eq[n] // First; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 02 2013 *)
  • PARI
    { S2(n, k) = (1/k!)*sum(i=0,k,(-1)^(k-i)*binomial(k,i)*i^n) }{ Eu(n) = sum(m=0,n,(-1)^m*m!*S2(n+1,m+1)*(-1)^floor(m/4)*2^-floor(m/2)*((m+1)%4!=0)) } T(n,k)=if(nRalf Stephan

Formula

E.g.f.: Sum_{n, k=0..oo} T(n, k) t^k x^(2n)/(2n)! = cosh(sqrt(1+4t) x/2) / cosh(x/2).
T(k, n) = Sum_{i=0..n-k} A028296(i)/4^(n-k)*C(2n, 2i)*C(n-i, n-k-i), or 0 if n
Polynomial recurrences: x^n = Sum_{0<=2i<=n} C(n, 2i)*H(n-i, x); (1/4+x)^n = Sum_{m=0..n} C(2n, 2m)*(1/4)^(n-m)*H(m, x).
Dumont/Zeng give a continued fraction and other formulas.
Triangle T(n, k) read by rows; given by [0, -1, -2, -4, -6, -9, -12, -16, ...] DELTA A000035, where DELTA is Deléham's operator defined in A084938.
Sum_{k=0..n} (-4)^(n-k)*T(n,k) = A000364(n) (Euler numbers). - Philippe Deléham, Oct 25 2006

Extensions

Edited by Ralf Stephan, Sep 08 2004

A086646 Triangle, read by rows, of numbers T(n,k), 0 <= k <= n, given by T(n,k) = A000364(n-k)*binomial(2*n, 2*k).

Original entry on oeis.org

1, 1, 1, 5, 6, 1, 61, 75, 15, 1, 1385, 1708, 350, 28, 1, 50521, 62325, 12810, 1050, 45, 1, 2702765, 3334386, 685575, 56364, 2475, 66, 1, 199360981, 245951615, 50571521, 4159155, 183183, 5005, 91, 1, 19391512145, 23923317720, 4919032300, 404572168, 17824950, 488488, 9100, 120, 1
Offset: 0

Author

Philippe Deléham, Jul 26 2003

Keywords

Comments

The elements of the matrix inverse are apparently given by T^(-1)(n,k) = (-1)^(n+k)*A086645(n,k). - R. J. Mathar, Mar 14 2013
Let E(y) = Sum_{n >= 0} y^n/(2*n)! = cosh(sqrt(y)). Then this triangle is the generalized Riordan array (1/E(-y), y) with respect to the sequence (2*n)! as defined in Wang and Wang. - Peter Bala, Aug 06 2013
Let P_n be the poset of even size subsets of [2n] ordered by inclusion. Then Sum_{k=0..n}(-1)^(n-k)*T(n,k)*x^k is the characteristic polynomial of P_n. - Geoffrey Critzer, Feb 24 2021

Examples

			Triangle begins:
      1;
      1,     1;
      5,     6,     1;
     61,    75,    15,    1;
   1385,  1708,   350,   28,  1;
  50521, 62325, 12810, 1050, 45, 1;
  ...
From _Peter Bala_, Aug 06 2013: (Start)
Polynomial  |        Real zeros to 5 decimal places
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
R(5,-x)     | 1, 9.18062, 13.91597
R(10,-x)    | 1, 9.00000, 25.03855,  37.95073
R(15,-x)    | 1, 9.00000, 25.00000,  49.00895, 71.83657
R(20,-x)    | 1, 9.00000, 25.00000,  49.00000, 81.00205, 114.87399
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
(End)
		

Crossrefs

Cf. A000281.
Cf. A000795 (row sums).
Cf. A055133, A086645 (unsigned matrix inverse), A103364, A104033.
T(2n,n) give |A214445(n)|.

Programs

  • Maple
    A086646 := proc(n,k)
        if k < 0 or k > n then
            0 ;
        else
            A000364(n-k)*binomial(2*n,2*k) ;
        end if;
    end proc: # R. J. Mathar, Mar 14 2013
  • Mathematica
    R[0, _] = 1;
    R[n_, x_] := R[n, x] = x^n - Sum[(-1)^(n-k) Binomial[2n, 2k] R[k, x], {k, 0, n-1}];
    Table[CoefficientList[R[n, x], x], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 19 2019 *)
    T[0, 0] := 1; T[n_, 0] := -Sum[(-1)^k T[n, k], {k, 1, n}]; T[n_, k_]/;0Oliver Seipel, Jan 11 2025 *)

Formula

cosh(u*t)/cos(t) = Sum_{n>=0} S_2n(u)*(t^(2*n))*(1/(2*n)!). S_2n(u) = Sum_{k>=0} T(n,k)*u^(2*k). Sum_{k>=0} (-1)^k*T(n,k) = 0. Sum_{k>=0} T(n,k) = 2^n*A005647(n); A005647: Salie numbers.
Triangle T(n,k) read by rows; given by [1, 4, 9, 16, 25, 36, 49, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938.
Sum_{k=0..n} (-1)^k*T(n,k)*4^(n-k) = A000281(n). - Philippe Deléham, Jan 26 2004
Sum_{k=0..n} T(n,k)*(-4)^k*9^(n-k) = A002438(n+1). - Philippe Deléham, Aug 26 2005
Sum_{k=0..n} (-1)^k*9^(n-k)*T(n,k) = A000436(n). - Philippe Deléham, Oct 27 2006
From Peter Bala, Aug 06 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/(2*n)! = cosh(sqrt(y)). Generating function: E(x*y)/E(-y) = 1 + (1 + x)*y/2! + (5 + 6*x + x^2)*y^2/4! + (61 + 75*x + 15*x^2 + x^3)*y^3/6! + .... The n-th power of this array has a generating function E(x*y)/E(-y)^n. In particular, the matrix inverse is a signed version of A086645 with a generating function E(-y)*E(x*y).
Recurrence equation for the row polynomials: R(n,x) = x^n - Sum_{k = 0..n-1} (-1)^(n-k)*binomial(2*n,2*k)*R(k,x) with initial value R(0,x) = 1.
It appears that for arbitrary complex x we have lim_{n -> infinity} R(n,-x^2)/R(n,0) = cos(x*Pi/2). A stronger result than pointwise convergence may hold: the convergence may be uniform on compact subsets of the complex plane. This would explain the observation that the real zeros of the polynomials R(n,-x) seem to converge to the odd squares 1, 9, 25, ... as n increases. Some numerical examples are given below. Cf. A055133, A091042 and A103364.
R(n,-1) = 0; R(n,-9) = (-1)^n*2*4^n; R(n,-25) = (-1)^n*2*(16^n - 4^n);
R(n,-49) = (-1)^n*2*(36^n - 16^n + 4^n). (End)

A085707 Triangular array A065547 unsigned and transposed.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 17, 17, 0, 1, 10, 55, 155, 155, 0, 1, 15, 135, 736, 2073, 2073, 0, 1, 21, 280, 2492, 13573, 38227, 38227, 0, 1, 28, 518, 6818, 60605, 330058, 929569, 929569, 0, 1, 36, 882, 16086, 211419, 1879038, 10233219, 28820619
Offset: 0

Author

Philippe Deléham, Jul 19 2003

Keywords

Examples

			1;
1,  0;
1,  1,  0;
1,  3,  3,   0;
1,  6, 17,  17,   0;
1, 10, 55, 155, 155, 0;
...
		

References

  • Louis Comtet, Analyse Combinatoire, PUF, 1970, Tome 2, pp. 98-99.

Crossrefs

Row sums Sum_{k>=0} T(n, k) = A006846(n), values of Hammersley's polynomial p_n(1).
Sum_{k>=0} 2^k*T(n, k) = A005647(n), Salie numbers.
Sum_{k>=0} 3^k*T(n, k) = A094408(n).
Sum_{k>=0} 4^k*T(n, k) = A000364(n), Euler numbers.

Programs

  • Mathematica
    h[n_, x_] := Sum[c[k]*x^k, {k, 0, n}]; eq[n_] := SolveAlways[h[n, x*(x-1)] == EulerE[2*n, x], x]; row[n_] := Table[c[k], {k, 0, n}] /. eq[n] // First // Abs // Reverse; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 02 2013 *)

Formula

Sum_{k >= 0} (-1/2)^k*T(n, k) = (1/2)^n.
Sum_{k >= 0} (-1/6)^k*T(n, k) = (4^(n+1)- 1)/3*(6^n).
Equals A000035 DELTA [0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ...], where DELTA is Deléham's operator defined in A084938.
T(n,n-1) = A110501(n), Genocchi numbers of first kind of even index. - Philippe Deléham, Feb 16 2007

A104030 Matrix inverse, read by rows, of triangle A104029, which forms the pairwise sums of trinomial coefficients.

Original entry on oeis.org

1, -2, 1, 7, -5, 1, -41, 32, -9, 1, 376, -299, 91, -14, 1, -5033, 4015, -1241, 205, -20, 1, 92821, -74080, 22954, -3842, 400, -27, 1, -2257166, 1801537, -558402, 93652, -9863, 707, -35, 1, 69981919, -55855829, 17313721, -2904530, 306409, -22190, 1162, -44, 1, -2694447797, 2150565968
Offset: 0

Author

Paul D. Hanna, Feb 26 2005

Keywords

Comments

Column 0 forms signed Hammersley's polynomial p_n(1) (A006846), offset 1.
Row sums equal negative Genocchi numbers of first kind (A001469).
Rows form polynomials R_n(x) such that: R_n(3) = 1 for n>=0 and R_n(1/2) = (-1)^n*A005647(n+1)/2^n (signed Salie numbers).
Column 1 forms A104031.
Unsigned row sums form A104032.

Examples

			Rows begin:
1;
-2,1;
7,-5,1;
-41,32,-9,1;
376,-299,91,-14,1;
-5033,4015,-1241,205,-20,1;
92821,-74080,22954,-3842,400,-27,1;
-2257166,1801537,-558402,93652,-9863,707,-35,1; ...
		

Programs

  • PARI
    T(n,k)=if(n=j, polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-2)+ polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-1))))^-1)[n+1,k+1])

A094408 a(n) = Sum_{k = 0..n} 3^k*A085707(n,k).

Original entry on oeis.org

1, 1, 4, 37, 631, 17266, 692785, 38325925, 2795925136, 260056965205, 30038178784699, 4218296308789630, 707778995370264001, 139840360858571766121
Offset: 0

Author

Philippe Deléham, Jun 04 2004

Keywords

Comments

Sum_{k = 0..n} x^k*A085707(n,k) give A006846(n), A005647(n), A000364(n) for x = 1, 2, 4 respectively.

Crossrefs

Cf. A085707.
Showing 1-7 of 7 results.