cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A086645 Triangle read by rows: T(n, k) = binomial(2n, 2k).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 28, 70, 28, 1, 1, 45, 210, 210, 45, 1, 1, 66, 495, 924, 495, 66, 1, 1, 91, 1001, 3003, 3003, 1001, 91, 1, 1, 120, 1820, 8008, 12870, 8008, 1820, 120, 1, 1, 153, 3060, 18564, 43758, 43758, 18564, 3060, 153, 1, 1, 190, 4845, 38760
Offset: 0

Views

Author

Philippe Deléham, Jul 26 2003

Keywords

Comments

Terms have the same parity as those of Pascal's triangle.
Coefficients of polynomials (1/2)*((1 + x^(1/2))^(2n) + (1 - x^(1/2))^(2n)).
Number of compositions of 2n having k parts greater than 1; example: T(3, 2) = 15 because we have 4+2, 2+4, 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2, 3+3. - Philippe Deléham, May 18 2005
Number of binary words of length 2n - 1 having k runs of consecutive 1's; example: T(3,2) = 15 because we have 00101, 01001, 01010, 01011, 01101, 10001, 10010, 10011, 10100, 10110, 10111, 11001, 11010, 11011, 11101. - Philippe Deléham, May 18 2005
Let M_n be the n X n matrix M_n(i, j) = T(i, j-1); then for n > 0, det(M_n) = A000364(n), Euler numbers; example: det([1, 1, 0, 0; 1, 6, 1, 0; 1, 15, 15, 1; 1, 28, 70, 28 ]) = 1385 = A000364(4). - Philippe Deléham, Sep 04 2005
Equals ConvOffsStoT transform of the hexagonal numbers, A000384: (1, 6, 15, 28, 45, ...); e.g., ConvOffs transform of (1, 6, 15, 28) = (1, 28, 70, 28, 1). - Gary W. Adamson, Apr 22 2008
From Peter Bala, Oct 23 2008: (Start)
Let C_n be the root lattice generated as a monoid by {+-2*e_i: 1 <= i <= n; +-e_i +- e_j: 1 <= i not equal to j <= n}. Let P(C_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(C_n) [Ardila et al.]. See A127674 for (a signed version of) the corresponding array of f-vectors for these type C_n polytopes. See A008459 for the array of h-vectors for type A_n polytopes and A108558 for the array of h-vectors associated with type D_n polytopes.
The Hilbert transform of this triangle is A142992 (see A145905 for the definition of this term).
(End)
Diagonal sums: A108479. - Philippe Deléham, Sep 08 2009
Coefficients of Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
Generalized Narayana triangle for 4^n (or cosh(2x)). - Paul Barry, Sep 28 2010
Coefficients of the matrix inverse appear to be T^(-1)(n,k) = (-1)^(n+k)*A086646(n,k). - R. J. Mathar, Mar 12 2013
Let E(y) = Sum_{n>=0} y^n/(2*n)! = cosh(sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence (2*n)! as defined in Wang and Wang. Cf. A103327. - Peter Bala, Aug 06 2013
Row 6, (1,66,495,924,495,66,1), plays a role in expansions of powers of the Dedekind eta function. See the Chan link, p. 534, and A034839. - Tom Copeland, Dec 12 2016

Examples

			From _Peter Bala_, Oct 23 2008: (Start)
The triangle begins
n\k|..0.....1.....2.....3.....4.....5.....6
===========================================
0..|..1
1..|..1.....1
2..|..1.....6.....1
3..|..1....15....15.....1
4..|..1....28....70....28.....1
5..|..1....45...210...210....45.....1
6..|..1....66...495...924...495....66.....1
...
(End)
From _Peter Bala_, Aug 06 2013: (Start)
Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n)! the column generating functions begin
1st col: cosh(sqrt(y)) = 1 + y/2! + y^2/4! + y^3/6! + y^4/8! + ....
2nd col: 1/2!*y*cosh(sqrt(y)) = y/2! + 6*y^2/4! + 15*y^3/6! + 28*y^4/8! + ....
3rd col: 1/4!*y^2*cosh(sqrt(y)) = y^2/4! + 15*y^3/6! + 70*y^4/8! + 210*y^5/10! + .... (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.

Crossrefs

Cf. A008459, A108558, A127674, A142992. - Peter Bala, Oct 23 2008
Cf. A103327 (binomial(2n+1, 2k+1)), A103328 (binomial(2n, 2k+1)), A091042 (binomial(2n+1, 2k)). -Wolfdieter Lang, Jan 06 2013
Cf. A086646 (unsigned matrix inverse), A103327.
Cf. A034839.

Programs

  • Magma
    /* As triangle: */ [[Binomial(2*n, 2*k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 14 2016
  • Maple
    A086645:=(n,k)->binomial(2*n,2*k): seq(seq(A086645(n,k),k=0..n),n=0..12);
  • Mathematica
    Table[Binomial[2 n, 2 k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 13 2016 *)
  • Maxima
    create_list(binomial(2*n,2*k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    {T(n, k) = binomial(2*n, 2*k)};
    
  • PARI
    {T(n, k) = sum( i=0, min(k, n-k), 4^i * binomial(n, 2*i) * binomial(n - 2*i, k-i))}; /* Michael Somos, May 26 2005 */
    

Formula

T(n, k) = (2*n)!/((2*(n-k))!*(2*k)!) row sums = A081294. COLUMNS: A000012, A000384
Sum_{k>=0} T(n, k)*A000364(k) = A000795(n) = (2^n)*A005647(n).
Sum_{k>=0} T(n, k)*2^k = A001541(n). Sum_{k>=0} T(n, k)*3^k = 2^n*A001075(n). Sum_{k>=0} T(n, k)*4^k = A083884(n). - Philippe Deléham, Feb 29 2004
O.g.f.: (1 - z*(1+x))/(x^2*z^2 - 2*x*z*(1+z) + (1-z)^2) = 1 + (1 + x)*z +(1 + 6*x + x^2)*z^2 + ... . - Peter Bala, Oct 23 2008
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A081294(n), A001541(n), A090965(n), A083884(n), A099140(n), A099141(n), A099142(n), A165224(n), A026244(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 08 2009
Product_{k=1..n} (cot(k*Pi/(2n+1))^2 - x) = Sum_{k=0..n} (-1)^k*binomial(2n,2k)*x^k/(2n+1-2k). - David Ingerman (daviddavifree(AT)gmail.com), Mar 30 2010
From Paul Barry, Sep 28 2010: (Start)
G.f.: 1/(1-x-x*y-4*x^2*y/(1-x-x*y)) = (1-x*(1+y))/(1-2*x*(1+y)+x^2*(1-y)^2);
E.g.f.: exp((1+y)*x)*cosh(2*sqrt(y)*x);
T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2*(k-j))*4^(k-j). (End)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-1) - T(n-2,k) - T(n-2,k-2), with T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 26 2013
From Peter Bala, Sep 22 2021: (Start)
n-th row polynomial R(n,x) = (1-x)^n*T(n,(1+x)/(1-x)), where T(n,x) is the n-th Chebyshev polynomial of the first kind. Cf. A008459.
R(n,x) = Sum_{k = 0..n} binomial(n,2*k)*(4*x)^k*(1 + x)^(n-2*k).
R(n,x) = n*Sum_{k = 0..n} (n+k-1)!/((n-k)!*(2*k)!)*(4*x)^k*(1-x)^(n-k) for n >= 1. (End)

A091042 Triangle of even numbered entries of odd numbered rows of Pascal's triangle A007318.

Original entry on oeis.org

1, 1, 3, 1, 10, 5, 1, 21, 35, 7, 1, 36, 126, 84, 9, 1, 55, 330, 462, 165, 11, 1, 78, 715, 1716, 1287, 286, 13, 1, 105, 1365, 5005, 6435, 3003, 455, 15, 1, 136, 2380, 12376, 24310, 19448, 6188, 680, 17, 1, 171, 3876, 27132, 75582, 92378, 50388, 11628, 969, 19, 1, 210, 5985, 54264, 203490, 352716, 293930, 116280, 20349, 1330, 21
Offset: 0

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Comments

The row polynomials Pe(n, x) := Sum_{m=0..n} a(n, m)*x^m appear as numerators of the generating functions for the even numbered column sequences of array A034870.
Elements have the same parity as those of Pascal's triangle.
All zeros of polynomial Pe(n, x) are negative. They are -tan^2(Pi/2*n+1), -tan^2(2*Pi/2*n+1), ..., -tan^2(n*Pi/2*n+1). Moreover, for m >= 1, Pe(m, -x^2) is the characteristic polynomial of the linear difference equation with constant coefficients for differences between multiples of 2*m+1 with even and odd digit sum in base 2*m in the interval [0,(2*m)^n). - Vladimir Shevelev and Peter J. C. Moses, May 22 2012
Row reverse of A103327. - Peter Bala, Jul 29 2013
The row polynomial Pe(d, x), multiplied by (2*d)!/d! = A001813(d), gives the numerator polynomial of the o.g.f. of the sequence of the diagonal d, for d >= 0, of the Sheffer triangle Lah[4,1] given in A048854. - Wolfdieter Lang, Oct 12 2017

Examples

			Triangle a(n, m) begins:
n\m  0   1    2     3      4      5      6      7     8    9  10 ...
0:   1
1:   1   3
2:   1  10    5
3:   1  21   35     7
4:   1  36  126    84      9
5:   1  55  330   462    165     11
6:   1  78  715  1716   1287    286     13
7:   1 105 1365  5005   6435   3003    455     15
8:   1 136 2380 12376  24310  19448   6188    680    17
9:   1 171 3876 27132  75582  92378  50388  11628   969   19
10:  1 210 5985 54264 203490 352716 293930 116280 20349 1330  21
... reformatted and extended. - _Wolfdieter Lang_, Oct 12 2017
From _Peter Bala_, Jan 30 2022: (Start)
(1/2)*(N^2 + N) = Sum_{j = 1..N} j.
(1/2)*(N^2 + N)^3 = Sum_{j = 1..N} j^3 + 3*Sum_{j = 1..N} j^5.
(1/2)*(N^2 + N)^5 = Sum_{j = 1..N} j^5 + 10*Sum_{j = 1..N} j^7 + 5*Sum_{j = 1..N} j^9.
(1/2)*(N^2 + N)^7 = Sum_{j = 1..N} j^7 + 21*Sum_{j = 1..N} j^9 + 35*Sum_{j = 1..N} j^11 + 7*Sum_{j = 1..N} j^13. (End)
		

References

  • A. M. Yaglom and I. M. Yaglom, An elementary proof of the Wallis, Leibniz and Euler formulas for pi. Uspekhi Matem. Nauk, VIII (1953), 181-187(in Russian).

Crossrefs

Cf. A212500, A038754. A000302 (row sums), A085478, A103327 (row reverse), A048854, A103328.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(2*n+1, 2*k) ))); # G. C. Greubel, Aug 01 2019
    
  • Magma
    [[Binomial(2*n+1,2*k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Maple
    f := (x, t) -> cosh(sqrt(x)*t)*sinh(t); seq(seq(coeff(((2*n+1)!*coeff(series(f(x,t),t,2*n+2),t,2*n+1)),x,k),k=0..n),n=0..9); # Peter Luschny, Jul 29 2013
  • Mathematica
    T[n_, k_] /; 0 <= k <= n := T[n, k] = 2T[n-1, k] + 2T[n-1, k-1] + 2T[n-2, k-1] - T[n-2, k] - T[n-2, k-2]; T[0, 0] = T[1, 0] = 1; T[1, 1] = 3; T[, ] = 0;
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jul 29 2018, after Philippe Deléham *)
    Table[Binomial[2*n+1, 2*k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2019 *)
  • PARI
    T(n,k) = binomial(2*n+1, 2*k); \\ G. C. Greubel, Aug 01 2019
    
  • Python
    from math import comb, isqrt
    def A091042(n): return comb((r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))<<1|1,n-comb(r+1,2)<<1) # Chai Wah Wu, Apr 30 2025
  • Sage
    [[binomial(2*n+1, 2*k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

T(n, m) = binomial(2*n+1, 2*m) = A007318(2*n+1, 2*m), n >= m >= 0, otherwise 0.
From Peter Bala, Jul 29 2013: (Start)
E.g.f.: sinh(t)*cosh(sqrt(x)*t) = t + (1 + 3*x)*t^3/3! + (1 + 10*x + 5*x^2)*t^5/5! + (1 + 21*x + 35*x^2 + 7*x^3)*t^7/7! + ....
O.g.f.: A(x,t) = (1 + (x - 1)*t)/( (1 + (x - 1)*t)^2 - 4*t*x ) = 1 + (1 + 3*x)*t + (1 + 10*x + 5*x^2)*t^2 + ...
The function A( x/(x + 4), t*(x + 4)/4 ) = 1 + (1 + x)*t + (1 + 3*x + x^2)*t^2 + ... is the o.g.f. for A085478.
O.g.f. for n-th diagonal: ( Sum_{k = 0..n} binomial(2*n,2*k)*x^k )/(1 - x)^(2*n).
n-th row polynomial R(n,x) = (1/2)*( (1 + sqrt(x))^(2*n+1) - (sqrt(x) - 1)^(2*n+1) ).
Row sums A000302. (End)
T(n, k) = 2*T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-1) - T(n-2,k) - T(n-2,k-2) with T(0,0)=T(1,0)=1, T(1,1)=3, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 26 2013
From Peter Bala, Jan 31 2022: (Start)
Define S(r,N) = Sum_{j = 1..N} j^r. Then the following identity holds for n >= 0: (1/2)*(N^2 + N)^(2*n+1) = T(n,0)*S(2*n+1,N) + T(n,1)*S(2*n+3,N) + ... + T(n,n)* S(4*n+1,N). Some examples are given below. (End)

A103327 Triangle read by rows: T(n,k) = binomial(2n+1, 2k+1).

Original entry on oeis.org

1, 3, 1, 5, 10, 1, 7, 35, 21, 1, 9, 84, 126, 36, 1, 11, 165, 462, 330, 55, 1, 13, 286, 1287, 1716, 715, 78, 1, 15, 455, 3003, 6435, 5005, 1365, 105, 1, 17, 680, 6188, 19448, 24310, 12376, 2380, 136, 1, 19, 969, 11628, 50388, 92378, 75582, 27132, 3876, 171, 1
Offset: 0

Views

Author

Ralf Stephan, Feb 06 2005

Keywords

Comments

A subset of Pascal's triangle A007318.
Elements have the same parity as those of Pascal's triangle.
Matrix inverse is A104033. - Paul D. Hanna, Feb 28 2005
Row reverse of A091042. - Peter Bala, Jul 29 2013
Let E(y) = cosh(sqrt(y)) = 1 + 3*y/3! + 5*y^2/5! + 7*y^3/7! + .... Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence (2*n+1)! as defined in Wang and Wang. Cf. A086645. - Peter Bala, Aug 06 2013
The row polynomial P(d, x) = Sum_{k=0..d} T(d, k)*x^k, multiplied by (2*d)!/d! = A001813(d), gives the numerator polynomial of the o.g.f. of the sequence of the diagonal d, for d >= 0, of the Sheffer triangle Lah[4,3] given in A292219. - Wolfdieter Lang, Oct 12 2017

Examples

			The triangle T(n, k) begins:
n\k   0    1     2      3      4      5      6     7    8   9  10 ...
0:    1
1:    3    1
2:    5   10     1
3:    7   35    21      1
4:    9   84   126     36      1
5:   11  165   462    330     55      1
6:   13  286  1287   1716    715     78      1
7:   15  455  3003   6435   5005   1365    105     1
8:   17  680  6188  19448  24310  12376   2380   136    1
9:   19  969 11628  50388  92378  75582  27132  3876  171   1
10:  21 1330 20349 116280 293930 352716 203490 54264 5985 210   1
... reformatted and extended. - _Wolfdieter Lang_, Oct 12 2017
From _Peter Bala_, Aug 06 2013: (Start)
Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n+1)! the column generating functions begin
1st col: cosh(sqrt(y)) = 1 + 3*y/3! + 5*y^2/5! + 7*y^3/7! + 9*y^4/9! + ....
2nd col: 1/3!*y*cosh(sqrt(y)) = y/3! + 10*y^2/5! + 35*y^3/7! + 84*y^4/9! + ....
3rd col: 1/5!*y^2*cosh(sqrt(y)) = y^2/5! + 21*y^3/7!! + 126*y^4/9! + 462*y^5/11! + .... (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.

Crossrefs

Reflected version of A091042. Cf. A086645, A103328.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(2*n+1, 2*k+1) ))); # G. C. Greubel, Aug 01 2019
  • Magma
    [Binomial(2*n+1, 2*k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    Flatten[Table[Binomial[2n+1,2k+1],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 19 2014 *)
  • Maxima
    create_list(binomial(2*n+1,2*k+1),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1+X*(1-Y))/((1+X*(1-Y))^2-4*X),n,x),k,y)} \\ Paul D. Hanna, Feb 28 2005
    
  • PARI
    T(n,k) = binomial(2*n+1, 2*k+1);
    for(n=0, 12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    [[binomial(2*n+1, 2*k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

G.f. for column k: Sum_{j=0..k+1} C(2*(k+1), 2*j)*x^j/(1-x)^(2*(k+1)). - Paul Barry, Feb 24 2005
G.f.: A(x, y) = (1 + x*(1-y))/( (1 + x*(1-y))^2 - 4*x ). - Paul D. Hanna, Feb 28 2005
Sum_{k=0..n} T(n, k)*A000364(n-k) = A002084(n). - Philippe Deléham, Aug 27 2005
E.g.f.: 1/sqrt(x)*sinh(sqrt(x)*t)*cosh(t) = t + (3 + x)*t^3/3! + (5 + 10*x + x^2)*t^5/5! + .... - Peter Bala, Jul 29 2013
T(n+2,k+2) = 2*T(n+1,k+2) + 2*T(n+1,k+1) - T(n,k+2) + 2*T(n,k+1) - T(n,k). - Emanuele Munarini, Jul 05 2017

A106328 Numbers j such that 8*(j^2) + 9 = k^2 for some positive number k.

Original entry on oeis.org

0, 3, 18, 105, 612, 3567, 20790, 121173, 706248, 4116315, 23991642, 139833537, 815009580, 4750223943, 27686334078, 161367780525, 940520349072, 5481754313907, 31950005534370, 186218278892313, 1085359667819508, 6325939728024735, 36870278700328902, 214895732473948677
Offset: 1

Views

Author

Pierre CAMI, Apr 29 2005

Keywords

Comments

The ratio k(n) /(2*j(n)) tends to sqrt(2) as n increases.
The squares of the numbers in this sequence are one less than a triangular number: a(n)^2 = A164080(n). For example, 18^2 is 324, and 325 is a triangular number. a(n)^2 + 1 = A164055(n). a(n)^2 = A072221(n)(A072221(n)+1)/2 - 1. - Tanya Khovanova & Alexey Radul, Aug 09 2009
For n > 0, a(n+1) is the n-th almost balancing number of first type (see Tekcan and Erdem). - Stefano Spezia, Nov 25 2022

Crossrefs

Programs

  • Haskell
    a106328 n = a106328_list !! (n-1)
    a106328_list = 0 : 3 : zipWith (-) (map (* 6) (tail a106328_list)) a106328_list
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Mathematica
    s=0;lst={};Do[s+=n;If[Sqrt[s-1]==Floor[Sqrt[s-1]],AppendTo[lst,Sqrt[s-1]]],{n,8!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 02 2009 *)
    Rest@ CoefficientList[Series[3 x^2/(1 - 6 x + x^2), {x, 0, 24}], x] (* Michael De Vlieger, Nov 02 2020 *)
  • PARI
    concat(0, Vec(3*x^2/(1-6*x+x^2) + O(x^40))) \\ Michel Marcus, Sep 07 2016
    
  • PARI
    a(n)=([0,1;-1,6]^n*[-3;0])[1,1] \\ Charles R Greathouse IV, Sep 07 2016

Formula

a(1)=0, a(2)=3 then a(n) = 6*a(n-1) - a(n-2).
a(n) = ((3+2*sqrt(2))^(n-1) - (3-2*sqrt(2))^(n-1))*3/4/sqrt(2). - Max Alekseyev, Jan 11 2007
a(n) = 3*A001109(n). - M. F. Hasler, R. J. Mathar, Jun 03 2009
a(n) = (3/4)*A005319(n-1).
G.f.: 3*x^2/(1 - 6*x + x^2). - Philippe Deléham, Nov 17 2008
E.g.f.: 3 - 3*exp(3*x)*(4*cosh(2*sqrt(2)*x) - 3*sqrt(2)*sinh(2*sqrt(2)*x))/4. - Stefano Spezia, Nov 25 2022

Extensions

More terms from Max Alekseyev, Jan 11 2007

A106329 Numbers k such that k^2 = 8*j^2 + 9.

Original entry on oeis.org

3, 9, 51, 297, 1731, 10089, 58803, 342729, 1997571, 11642697, 67858611, 395508969, 2305195203, 13435662249, 78308778291, 456417007497, 2660193266691, 15504742592649, 90368262289203, 526704831142569, 3069860724566211, 17892459516254697, 104284896372961971
Offset: 1

Views

Author

Pierre CAMI, Apr 29 2005

Keywords

Comments

The ratio a(n)/(2*j(n)) tends to sqrt(2) as n increases.
After 3, first differences of A301383. - Bruno Berselli, Mar 22 2018
For n > 0, a(n+1) is the n-th almost Lucas-balancing number of first type (see Tekcan and Erdem). - Stefano Spezia, Nov 25 2022

Crossrefs

Programs

Formula

a(1)=3, a(2)=9 then a(n) = 6*a(n-1)-a(n-2).
G.f.: 3*x*(1 - 3*x)/(1 - 6*x + x^2). - Philippe Deléham, Nov 17 2008
a(n) = (3/2)*A003499(n-1).
a(n) = 3*((3-2*sqrt(2))^(n-1) + (3+2*sqrt(2))^(n-1))/2. - Colin Barker, Oct 13 2015
E.g.f.: 3*exp(3*x)*(3*cosh(2*sqrt(2)*x) - 2*sqrt(2)*sinh(2*sqrt(2)*x)) - 9. - Stefano Spezia, Nov 25 2022

A281123 Triangle T read by rows: n-th row (n>=0) gives the non-vanishing coefficients of the polynomial q(n,x) = 2^(-n)*((x+1)^(2^n) - (x-1)^(2^n))/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 7, 1, 1, 35, 273, 715, 715, 273, 35, 1, 1, 155, 6293, 105183, 876525, 4032015, 10855425, 17678835, 17678835, 10855425, 4032015, 876525, 105183, 6293, 155, 1, 1, 651, 119133, 9706503, 430321633, 11618684091, 205263418941, 2492484372855, 21552658988805, 136248095712855
Offset: 0

Views

Author

Martin Renner, Jan 15 2017

Keywords

Comments

Row n has length 1 for n = 1 and 2^(n-1) = A000079(n-1) for n >= 1.
The triangle T gives the non-vanishing coefficients of the polynomial q(0,x) = 1 and q(n,x) = 2^(-n)*Sum_{k=0..2^(n-1)-1} A281122(n,k) * x^(2^n-1-2*k), n >= 1.
The polynomial q(n,x) = product_{k=0..n-1} p(k,x) with polynomial p(n,x) = ((x+1)^(2^n) + (x-1)^(2^n))/2, whose coefficients are tabulated in A201461.
The algorithm r(n) = 1/2*(r(n-1) + A/r(n-1)), starting with r(0) = A, used for approximating sqrt(A), which is known as the Babylonian method or Hero's method after the first-century Greek mathematician Hero of Alexandria and which can be derived from Newton's method, generates fractions beginning with (A+1)/2, (A^2 + 6*A + 1)/(4*(A + 1)), (A^4 + 28*A^3 + 70*A^2 + 28*A + 1)/(8*(A^3 + 7*A^2 + 7*A + 1)), ... This is sqrt(A)*p(n,sqrt(A))/(2^n*q(n,sqrt(A))) with the given polynomials p(n,x) and q(n,x).

Examples

			The triangle T(n, k) starts with:
  1
  1
  1, 1
  1, 7, 7, 1
  1, 35, 273, 715, 715, 273, 35, 1
  1, 155, 6293, 105183, 876525, 4032015, 10855425, 17678835, 17678835, 10855425, 4032015, 876525, 105183, 6293, 155, 1
etc., since the first few polynomials are
q(0,x) = 1,
q(1,x) = x,
q(2,x) = x^3 + x = x*(x^2 + 1),
q(3,x) = x^7 + 7*x^5 + 7*x^3 + x = x*(x^2 + 1)*(x^4 + 6*x^2 + 1),
q(4,x) = x^15 + 35*x^13 + 273*x^11 + 715*x^9 + 715*x^7 + 273*x^5 + 35*x^3 + x = x*(x^2 + 1)*(x^4 + 6*x^2 + 1)*(x^8 + 28*x^6 + 70*x^4 + 28*x^2 + 1),
etc.
		

Crossrefs

Programs

  • Mathematica
    t={1};T[n_,k_]:=Table[2^(-n)Binomial[2^n,2k+1],{n,1,6},{k,0,2^(n-1)-1}];Do[AppendTo[t,T[n,k]]];Flatten[t] (* Indranil Ghosh, Feb 22 2017 *)

Formula

T(n, k) = 1 for n=0, k=0, and T(n, k) = 2^(-n) * binomial(2^n,2*k+1) = A103328(2^(n-1),k) for k = 0..2^(n-1)-1 and n >= 1. - Wolfdieter Lang, Jan 20 2017

Extensions

Edited. - Wolfdieter Lang, Jan 20 2017
More terms from Indranil Ghosh, Feb 22 2017

A281122 Triangle T read by rows: n-th row (n>=0) gives the non-vanishing coefficients of the polynomial q(n,x) = ((x+1)^(2^n) - (x-1)^(2^n))/2.

Original entry on oeis.org

1, 2, 4, 4, 8, 56, 56, 8, 16, 560, 4368, 11440, 11440, 4368, 560, 16, 32, 4960, 201376, 3365856, 28048800, 129024480, 347373600, 565722720, 565722720, 347373600, 129024480, 28048800, 3365856, 201376, 4960, 32
Offset: 0

Views

Author

Martin Renner, Jan 15 2017

Keywords

Comments

The length of row n is 1 for n = 0 and 2^(n-1) = A000079(n-1) for n >= 1.
The polynomial q(n,x) = 2^n*Product_{k=0..n-1} p(k,x) with polynomial p(n,x) = ((x+1)^(2^n) + (x-1)^(2^n))/2, whose coefficients are tabulated in A201461.
The row polynomials are q(n, x) = Sum_{k=0..2^(n-1)-1} T(n, k)*x^(2^n-1-2*k) for n >= 1, and q(0,x) = 1. - Wolfdieter Lang, Jan 19 2017
A201461 and T(n,k) are a bisection of row 2^n of Pascal's triangle A007318.
The algorithm r(n) = 1/2*(r(n-1) + A/r(n-1)), starting with r(0) = A, used for approximating sqrt(A), which is known as the Babylonian method or Hero's method after the first-century Greek mathematician Hero of Alexandria and which can be derived from Newton's method, generates fractions beginning with (A+1)/2, (A^2 + 6*A + 1)/(4*A + 4), (A^4 + 28*A^3 + 70*A^2 + 28*A + 1)/(8*A^3 + 56*A^2 + 56*A + 8), ... This is sqrt(A)*p(n,sqrt(A))/q(n,sqrt(A)) with the given polynomials p(n,x) and q(n,x).

Examples

			The triangle of non-vanishing coefficients starts with
1
2
4, 4
8, 56, 56, 8
16, 560, 4368, 11440, 11440, 4368, 560, 16
etc., since the first few polynomials are
q(0,x) = 1,
q(1,x) = 2*x,
q(2,x) = 4*x^3 + 4*x = 4*x*(x^2 + 1),
q(3,x) = 8*x^7 + 56*x^5 + 56*x^3 + 8*x = 8*x*(x^2 + 1)*(x^4 + 6*x^2 + 1),
q(4,x) = 16*x^15 + 560*x^13 + 4368*x^11 + 11440*x^9 + 11440*x^7 + 4368*x^5 + 560*x^3 + 16*x = 16*x*(x^2 + 1)*(x^4 + 6*x^2 + 1)*(x^8 + 28*x^6 + 70*x^4 + 28*x^2 + 1),
etc.
		

Crossrefs

Programs

  • Maple
    CoeffList := p -> remove(n->n=0, [op(PolynomialTools:-CoefficientList(p, x))]):
    Tpoly := n -> (1/2)*((x+1)^(2^n) - (x-1)^(2^n));
    seq(print(CoeffList(Tpoly(n))), n=0..5); # Peter Luschny, Feb 04 2021
  • Mathematica
    q[n_] := DeleteCases[ CoefficientList[ Expand[((x +1)^(2^n) - (x -1)^(2^n))/2], x], 0]; Array[q, 7, 0] // Flatten (* Robert G. Wilson v, Jan 16 2017 *)
    t={1};T[n_,k_]:=Table[Binomial[2^n,2k+1],{n,1,6},{k,0,2^(n-1)-1}];Do[AppendTo[t,T[n,k]]];Flatten[t] (* Indranil Ghosh, Feb 22 2017 *)

Formula

T(n, k) = 1 if n = 0 and k = 0, and T(n, k) = binomial(2^n,2*k+1) = A103328(2^(n-1),k) for k = 0..2^(n-1)-1 and n >= 1. - Wolfdieter Lang, Jan 19 2017

A280921 Degree of SO(n,C), the special orthogonal group, as an algebraic variety.

Original entry on oeis.org

2, 8, 40, 384, 4768, 111616, 3433600, 196968448, 14994641408, 2112561610752, 397713919469568, 137785594909556736, 64120367727755108352, 54666180849611078369280, 62864933930402036994048000, 131959858152100309567348408320, 374913851106401853810511580364800, 1938349609799484523235647407112847360, 13603397258157549964912652571654029312000
Offset: 2

Views

Author

Taylor Brysiewicz, Jan 10 2017

Keywords

Examples

			For n = 4 we have a(4) = 2^3*det({6,1},{1,1}) = 2^3*(6-1) = 40.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(n-1) Det[Table[Binomial[2n-2i-2j, n-2i], {i, n/2}, {j, n/2}]];
    Table[a[n], {n, 2, 20}] (* Jean-François Alcover, Aug 12 2018 *)
  • PARI
    a(n) = 2^(n-1)*matdet(matrix(n\2,n\2,i,j,binomial(2*n-2*i-2*j,n-2*i))); \\ Michel Marcus, Jan 14 2017

Formula

a(n) = 2^(n-1)*det(binomial(2n-2i-2j, n-2i))_{i,j=1..floor(n/2)}.
a(2*n+1) = A280922(n) * 2^(2*n).
Let M_n be the n X n matrix M_n(i, j) = binomial(2*i+2*j-2, 2*i-1) = A103328(i+j-1, i-1); then a(2*n+1) = 2^(2*n)*det(M_n).
Let M_n be the n X n matrix M_n(i,j) = binomial(2*i+2*j-4, 2*i-2) = A086645(i+j-2, i-1); then a(2*n) = 2^(2*n-1)*det(M_n).

A280922 Degree of Sp(n,C), the symplectic group, as an algebraic variety.

Original entry on oeis.org

2, 24, 1744, 769408, 2063048448, 33639061257216, 3336558889746769920, 2013547640260319665029120, 7394216956327379315321530941440, 165246096715086213509958939917335920640, 22475501333841331145301219459764999435840913408
Offset: 1

Views

Author

Taylor Brysiewicz, Jan 10 2017

Keywords

Examples

			For n=2 we have a(2)=det({2,4},{4,20})=24.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Det[Table[Binomial[2i+2j-2, 2i-1], {i, 1, n}, {j, 1, n}]]
    Table[a[n], {n, 1, 11}] (* Jean-François Alcover, Aug 12 2018 *)
  • PARI
    a(n) = matdet(matrix(n,n,i,j,binomial(2*i+2*j-2, 2*i-1))); \\ Michel Marcus, Jan 14 2017

Formula

a(n) = det(binomial(2*i+2*j-2,2*i-1))_{i,j=1}^n.
a(n)*2^(2*n) = A280921(2*n+1).
a(n)*2^(2*n+1) = A280923(2*n+1).
Let M_n be the n X n matrix M_n(i,j) = binomial(2*i+2*j-2,2*i-1) = A103328(i+j-1,i-1); then a(n) = det(M_n).
Showing 1-9 of 9 results.